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Orsay, France.

Email address: hoang-chinh.lu@universite-paris-saclay.fr
URL: https://www.imo.universite-paris-saclay.fr/~lu/

mailto:hoang-chinh.lu@universite-paris-saclay.fr
https://www.imo.universite-paris-saclay.fr/~lu/


Contents

Travaux présentés pour l’HdR 4
Autres travaux 5

Remerciements 6

Introduction 7
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Introduction

Ce mémoire présente un ensemble de résultats en analyse et géométrie complexe que j’ai
obtenus après ma thèse en 2012, en collaboration avec plusieurs auteurs. Dans ces résultats on
voit le rôle important de la théorie du pluripotentiel dans les développements récents en géométrie
complexe. Le mémoire se décompose en quatre parties que l’on va maintenant décrire un peu en
détail.

Équations de Monge-Ampère complexes à singularité prescrite

Soit X une variété kählérienne compacte de dimension n. Calabi a conjecturé en 1954 que
dans chaque classe de cohomologie d’une métrique kählérienne ω on peut trouver une métrique à
courbure de Ricci prescrite. Le problème se ramène à résoudre une équation de Monge-Ampère
complexe, une EDP non-linéaire elliptique du second ordre. La résolution de cette conjecture par
Aubin [Aub78] et Yau [Yau78] est basée sur la méthode de continuité et les estimées à priori, la
partie la plus délicate étant l’estimée à priori L∞ établie par Yau via le processus d’itération de
Moser.

Dans le même temps, Bedford et Taylor [BT76, BT82] ont construit les premiers éléments
d’une théorie des solutions faibles pour l’équation de Monge-Ampère complexe. Basé sur cette
théorie, Ko lodziej [Ko l98] a mis au point une approche pluripotentielle pour établir l’estimée L∞

valable dans plusieurs contextes géométriques. Tandis que la définition de l’opérateur de Monge-
Ampère de Bedford et Taylor s’applique à toutes fonctions plurisousharmoniques bornées, étendre
cette définition pour les fonctions non-bornées est un travail délicat. Cegrell [Ceg98, Ceg04] a
introduit plusieurs classes contenant des fonctions psh non-bornées pour lesquelles on peut définir
convenablement l’opérateur de Monge-Ampère. Contrairement au cas local considéré par Cegrell,
sur une variété compacte kählérienne la masse de Monge-Ampère est facile à contrôler. Guidés
par cette observation, Guedj-Zeriahi [GZ07], et Boucksom-Eyssidieux-Guedj-Zeriahi [BEGZ10]
ont introduit la notion de “produit non-pluripolaire”. Pendant plus de vingt ans la théorie s’est
développée intensivement et elle a connu beaucoup d’applications géométriques remarquables.

Le premier chapitre de ce mémoire se place dans ce contexte. Il regroupe notamment
des travaux obtenus en collaboration avec T. Darvas et E. Di Nezza [DNL17a], [DDNL18c,
DDNL18b, DDNL21a] dont le thème principal est la résolution de l’équation de Monge-
Ampère complexe dans un contexte d’une classe de cohomologie grosse. Dans les Théorème 1.10 et
Théorème 1.11 on établit des estimées à priori L∞ relatives généralisant l’estimée de Yau [Yau78]
et Ko lodziej [Ko l98]. L’outil principal dans notre approche est la capacité de Monge-Ampère
généralisée. Le thème central dans les travaux [DDNL18c, DDNL18b, DDNL21a] est la
théorie du pluripotentiel relative. En particulier, on résout l’équation de Monge-Ampère complexe
à singularité prescrite par un potentiel modèle (Théorème 1.12).

Un élément indispensable dans nos travaux est la monotonie de la masse du produit non-
pluripolaire par rapport au type de singularité du potentiel (Théorème 1.1). En utilisant la
résolution de cette équation, on montre que la fonction volume, définie sur le cône des courants
fermés positifs de type (1, 1), est log-concave (Théorème 1.13), confirmant une conjecture de
Boucksom-Eyssidieux-Guedj-Zeriahi [BEGZ10].
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Théorie du pluripotentiel sur des variétés hermitiennes compactes

Le deuxième chapitre concerne des travaux en collaboration avec T.T. Phung et T.D. Tô
[LPT20], et avec V. Guedj [GL21a, GL21b, GL21c]. Nous nous somme intéressés aux équations
de Monge-Ampère complexes sur des variétées hermitiennes compactes (non-kählériennes). Le
sujet a été initié par Cherrier [Che87] et Hanani [Han96], qui ont essayé de démontrer une
version analogue du théorème de Yau [Yau78]. La stratégie est la même que dans le cas kählérien:
on utilise la méthode de continuité et on établit les estimées a priori. Dans [Che87] l’existence
d’une solution lisse a été démontrée sous une condition assez restrictive sur la forme de référence,
utilisée pour établir une estimée L∞. Cette dernière a été enfin obtenue en toute généralité par
Tosatti-Weinkove [TW10]. La difficulté du problème vient du fait que la forme de référence n’est
pas fermée, ce qui produit plusieurs termes à contrôler à chaque fois que l’on utilise le théorème
de Stokes.

L’intérêt pour la théorie pluripotentielle dans ce cadre a grandi pendant la dernière décennie.
S. Dinew, S. Ko lodziej, N.C. Nguyen ont posé les premiers pierres de cette théorie et ont obtenu
quelques résultats importants. Dans [LPT20] (Théorème 2.7 et Théorème 2.8) nous avons amélioré
les résultats de stabilité et régularité de Ko lodzeij-Nguyen [KN19]. Dans [GL21c], on introduit
deux nouvelles approches pour l’estimée L∞ qui s’appliquent aux formes de référence semipositives
non nécessairement hermitiennes (Théorème 2.3). On utilise ensuite ces estimées pour résoudre
les équations de Monge-Ampère (Théorème 2.4), établissant une version hermitienne singulière
du théorème de Yau (Théorème 2.6). Dans la deuxième partie de ce chapitre, on se concentre sur
le volume de Monge-Ampère. En particulier, dans le Théorème 2.9 on confirme une conjecture de
Demailly-Păun [DP04] pour certaines variétés complexes compactes non-kählériennes.

Flots de Monge-Ampère complexes

Le flot de Ricci en géométrie riemannienne a été introduit par Hamilton [Ham82]. C’est un
flot de métriques qui évoluent selon leur tenseur de Ricci. D’après une observation de Bando, la
propriété d’être kählérienne est préservée le long du flot de Ricci; le flot ainsi obtenu est appelé le
flot de Kähler-Ricci. Ce dernier peut être écrit comme une équation de Monge-Ampère scalaire
parabolique, dont l’existence d’une solution lisse dans un intervalle maximal est bien connue.
H.D. Cao [Cao85] a démontré que si c1(X) ≤ 0 alors le flot de Kähler-Ricci existe pour tout le
temps et converge en topologie C∞ vers l’unique métrique Kähler-Einstein. Le même phénomène
sur les modèles minimaux lisses de type général a été découvert par Tsuji [Tsu88]. Depuis, le
flot de Kähler-Ricci est devenu un outil important en géométrie kählérienne.

En s’inspirant du travail célèbre de Birkar-Cascini-Hacon-Mckernan [BCHM10], qui montre
l’existence des modèles minimaux pour les variétés de type général, Song et Tian [ST17] ont
proposé une approche analytique analogue utilisant le flot de Kähler-Ricci. Partant d’une variété
dont le diviseur canonique est nef, le flot existe pour tout temps et doit converger après une
normalisation appropriée. Si le diviseur canonique n’est pas nef, le flot développe des singularités
en temps fini. On espère que le flot déforme une variété en une autre plus simple à chaque temps
de singularité fini, puis qu’il redémarre sur la nouvelle variété et finalement converge vers un
modèle minimal.

Comme les modèles rencontrés le long du flot sont nécessairement singuliers, on est obligé
de développer une théorie des solutions faibles. Une étape importante dans ce programme est
de savoir démarrer le flot à partir d’un courant singulier. Dans [ST17], Song-Tian ont réussi à
construire le flot à partir d’un courant à potentiel continu. Guedj-Zeriahi [GZ17] ont pu démarrer
le flot à partir d’un potentiel à nombre de Lelong zero. Notre travail [DNL17b] permet de traiter
le cas général d’un courant positif fermé de type (1, 1).
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Dans [GLZ20b, GLZ20a], les premiers éléments d’une théorie pluripotentielle parabolique
ont été construits permettant de traiter le cas des singularités “Kawamata log terminales”. L’idée
fondamentale dans ces deux travaux est que l’on peut exprimer l’équation du flot au moyen de la
théorie pluripotentielle sur la variété produit X × (0, T ), qui permet de traiter arjointement la
variable spatiale et la variable temporelle.

Métriques kählériennes à courbure scalaire constante

Une métrique cscK est une métrique kählérienne dont la courbure scalaire (la trace de sa
forme de Ricci) est constante. C’est un cas particulier des métriques extrémales qui sont des
points critiques de la fonctionnelle d’énergie de Calabi. Si la classe de cohomologie d’une métrique
kählérienne est proportionnelle à la première classe de Chern c1(X), toute métrique cscK dans
cette classe est Kähler-Einstein. Il y a des obstructions géométriques bien connues à l’existence
des métriques cscK. La célèbre conjecture de Yau-Tian-Donaldson prédit que l’existence d’une
métrique cscK est équivalente à la K-stabilité (uniforme).

Dans son travail fondateur [Mab87], Mabuchi a introduit une structure riemanienne sur
l’espace H des métriques kählériennes dans une classe de cohomologie fixée {ω}. La structure
donne lieu à la notion des chemins géodésiques qui, d’après Semmes [Sem92] et Donaldson
[Don99], sont solutions d’une équation de Monge-Ampère complexe homogène dégénérée. Dans
le même travail, Mabuchi a introduit la fonctionnelle K-énergie que l’on noteraM, dont les points
critiques sont des métriques cscK. De plus, M est convexe le long des géodésiques dans H, ce qui
suggère de traiter les métriques cscK comme des minimiseurs de M. Cependant l’existence des
chemins géodésiques dans H est problématique. On peut construire un chemin géogésique au sense
faible en prenant l’enveloppe des sous-géodésiques. D’après X.X. Chen [Che00], Darvas-Lempert
[DL12], Lempert-Vivas [LV13], et Chu-Tosatti-Weinkove [CTW18] la régularité optimale est
C1,1. Il est donc souhaitable de disposer de la convexité deM le long des géodésiques ayant cette
régularité, et c’est exactement ce qu’ont démontré Berman-Berndtsson dans [BB17].

Dans son travail [Che00], Chen a montré que H muni de la distance de Mabuchi est un espace
métrique géodésique. Une généralisation naturelle de cette métrique est la famille des métriques
finslériennes de type Lp sur H introduites par Darvas [Dar15]. Ces espaces de métriques ne
sont pas complets et chercher à comprendre leurs complétés est un travail important. Dans ses
deux travaux [Dar17a], [Dar15], Darvas a montré que ces complétés sont des espaces d’énergie
finie Ep étudiés précédemment par Guedj-Zeriahi [GZ07]. L’importance de la métrique L1 de
Darvas est que la topologie induite coincide avec la topologie forte définie précédemment par
Berman-Boucksom-Eyssidieux-Guedj-Zeriahi dans [BBE+19]. En outre, dans cette dernière
topologie, les ensembles de sous-niveau de M sont compacts dans chaque boule fermée de E1.

Les travaux influents de Berman-Berndtsson [BB17], Berman-Boucksom-Eyssidieux-Guedj-
Zeriahi [BBE+19], et Darvas [Dar17a, Dar15] ont ouvert la porte à une approche variationnelle
pour l’étude des métriques cscK. Dans [BDL17], nous avons démontré que M étendue sur Ep
est convexe et semi-continue inférieurement, et que de plus la K-énergie tordue par une forme
kählérienne est strictement convexe (Théorème 4.8). On a ensuite utilisé cela dans [BDL20]
pour démontrer que sur une variété cscK, tout minimiseur dans E1 de M est lisse (Théorème
4.13). En combinant ce résultat avec le travail de Darvas-Rubinstein [DR17], on peut confirmer
une direction dans la conjecture de Tian reliant l’existence des métriques cscK à la coercivité de
la K-énergie M.

Une conséquence importante de notre résultat est la résolution dans une direction de la
conjecture de Yau-Tian-Donaldson [BDL20]: une variété polarisée (X,L) admettant une métrique
cscK est K-polystable. Deux ans plus tard, Chen-Cheng ont confirmé l’autre direction de cette
conjecture de Tian (si M est coercive alors H contient une métrique cscK), en introduisant
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une équation de Monge-Ampère auxiliaire et en établissant des estimées à priori (voir [CC21a,
CC21b]).

Une conjecture de Donaldson [Don99] prédit que, si H ne contient pas de métrique cscK
et le groupe G d’automorphisme de X est trivial, alors il existe un rayon géodésique le long
duquel la K-énergie est décroissante. Une version quantitative de cette conjecture a été démontrée
par Chen-Cheng [CC21b]: il existe une métrique cscK dans H si et seulement si la variété est
L1-géodésiquement stable. En gros, cette dernière notion est équivalente à la strict positivité de la
pente de la K-énergie le long des rayons géodésiques dans E1. D’après Berman-Boucksom-Jonsson
[BBJ15], pour résoudre la version uniforme de la conjecture de Yau-Tian-Donaldson, reliant
l’existence d’une métrique cscK à la K-stabilité uniforme, il faut remplacer les E1-géodésiques
par les géodésiques provenant des configurations test. Dans [DL20], en utilisant l’estimée L∞

relative entre autres, on a confirmé la version C1,1̄ de la conjecture de Donaldson (Théorème
4.18), fournissant probablement une étape intermédiare pour la résolution de la conjecture de
Yau-Tian-Donaldson. Pour terminer, à l’heure actuelle, la conjecture est toujours ouverte mais
elle est très activement étudiée par plusieurs communautés de recherche.



CHAPTER 1

Complex Monge-Ampère equations with prescribed
singularities

We start with a brief history of the resolution of the complex Monge-Ampère equation

(ω + ddcϕ)n = eλϕµ,

on a compact Kähler manifold X of dimension n equipped with a Kähler metric ω. Here, µ is
a positive Radon measure on X, λ ∈ R and we restrict our attention to three cases λ = 0,±1.
When µ = fdV with f positive and smooth, solving the above Monge-Ampère equation yields
existence of Kähler metrics in the cohomology class of ω with prescribed Ricci curvature. For
λ ≥ 0, Aubin [Aub78] and Yau [Yau78] proved that there is a unique smooth solution obtained
via a priori estimates in the continuity method. The most difficult part was known to be the
L∞-estimate in the case λ ≤ 0. Yau’s proof of the L∞ estimate relies on a delicate Moser
iteration process which applies to densities f ∈ Lp for some p > n. Twenty years after Yau’s
proof, Ko lodziej [Ko l98] introduced a new approach using the Monge-Ampère capacity. His
proof applies to densities f ∈ Lp for p > 1 (or more generally to densities in some Orlicz space
with fast growth at infinity). In relation with the Minimal Model Program in birational geometry,
Ko lodziej’s approach has been pushed further by Eyssidieux-Guedj-Zeriahi in [EGZ09] where
they studied Monge-Ampère equations on singular Kähler varieties. In many geometric situations
one can not expect the solutions to be globally bounded, and making sense of the Monge-Ampère
measure of unbounded psh functions is a delicate task. In [GZ07] Guedj-Zeriahi defined the
non-pluripolar Monge-Ampère measure and solved degenerate Monge-Ampère equations for
quite general measures on the right-hand side. This approach has been extended to the context
of big cohomology classes by Boucksom-Eyssidieux-Guedj-Zeriahi [BEGZ10]. In [BBGZ13],
Berman-Boucksom-Guedj-Zeriahi introduced a variational method to solve the Monge-Ampère
equation without using the continuity method.

In [DNL15, DNL17a, DNL17b], [DDNL18c, DDNL18b, DDNL18a, DDNL21a,
DDNL21b], [GLZ19a], [BBLL19] we obtained several results in this direction. We now present
some of them in detail and introduce several open questions along the way.

1. Monotonicity of non-pluripolar Monge-Ampère mass

Let θ be a smooth closed real (1, 1)-form on X. A function u : X → R ∪ {−∞} is quasi-
plurisubharmonic (qpsh) if locally u = ρ+ ϕ where ϕ is plurisubharmonic (psh) and ρ is smooth.
A qpsh function u is θ-psh if θ+ ddcu ≥ 0 in the weak sense of currents. We let PSH(X, θ) denote
the class of all θ-psh functions on X which are not indentically −∞. The cohomology class {θ} is
big if PSH(X, θ − εω) is not empty for some ε > 0, it is nef if {θ + εω} is Kähler for all ε > 0.

Throughout this section we assume that {θ} is big. By Demailly’s regularization theorem
[Dem92, Dem94] there exists ψ ∈ PSH(X, θ − εω) with analytic singularities, which is smooth
in some Zariski open set called the ample locus of {θ}, and denoted by Amp(θ). Here, a function

11
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f : X → R ∪ {−∞} has analytic singularities if it can be written locally as

f(x) = c log

 N∑
j=1

|fj |2
+ ρ,

where c > 0, ρ is smooth and the functions fj are holomorphic.
Given two θ-psh functions u and v we say that u is more singular than v, and we write u � v,

if u ≤ v + C for some constant C. These two functions have the same singularities, and we write
u ' v, if u � v and v � u. The envelope

Vθ := sup{u ∈ PSH(X, θ) : u ≤ 0}
is a θ-psh function with minimal singularities, it is less singular than any other θ-psh functions.

The classical Monge-Ampère capacity (see [BT82], [Ko l98], [GZ05]) is defined by

Capω(E) := sup

{∫
E

(ω + ddcu)n : u ∈ PSH(X,ω), −1 ≤ u ≤ 0

}
.

A sequence uj converges in capacity to u if for any ε > 0 we have

lim
j→+∞

Capω({|uj − u| ≥ ε}) = 0.

A set E is quasi-open (respectively quasi-closed) if for any ε > 0 there exists an open
(respectively closed) set U such that Capω(E \ U) ≤ ε and Capω(U \ E) ≤ ε.

Assume θ1, ..., θp, p ≤ n, are smooth closed real (1, 1)-forms representing big cohomology
classes. Let uj ∈ PSH(X, θj), for j = 1, ..., p. If these functions are locally bounded in the
corresponding ample loci then by Bedford-Taylor [BT76, BT82] we can define the Monge-
Ampère product

(θ1 + ddcu1) ∧ ... ∧ (θp + ddcup),

as a positive (p, p)-current on ∩nj=1Amp(θj). Since the total mass of this current is finite, one
can extend it trivially over X. As shown by Bedford-Taylor [BT87], the Monge-Ampère product
is local in the plurifine topology: if U is a quasi-open set and uj = vj on U for j = 1, ..., p, then

1U (θ1 + ddcu1) ∧ ... ∧ (θp + ddcup) = 1U (θ1 + ddcv1) ∧ ... ∧ (θp + ddcvp).

We next define the non-pluripolar product following [BEGZ10]. For each t > 0, we consider
uj,t := max(uj , Vθj − t) and Ut := ∩nj=1{uj > Vθj − t}. By locality of the Monge-Ampère product
with respect to the plurifine topology, the measures

1Ut(θ1 + ddcu1,t) ∧ ... ∧ (θp + ddcup,t)

are increasing in t. The limit as t→ +∞, denoted by (θ1 +ddcu1)∧ ...∧ (θp+ddcup), is a positive
current on X. By Sibony [Sib85] (see also [Dem12], [BEGZ10]), this current is closed. In case
when u1 = ... = un = u and θ1 = ... = θn = θ, we obtain the non-pluripolar Monge-Ampère
measure of u denoted by (θ + ddcu)n or simply by θnu . Thus, given big cohomology classes
α1, ..., αp one can define the positive product 〈α1...αp〉 as the de Rham cohomology class of the
closed positive (p, p)-current:

(θ1 + ddcVθ1) ∧ ... ∧ (θp + ddcVθp),

where θj is a closed smooth real (1, 1)-form representing αj . As shown in [BEGZ10] 〈α1...αp〉
depends continuously on the p-tuple (α1, ..., αp).

In the construction of the non-pluripolar product we somehow remove the singular part of
the Monge-Ampère product. If u � v then the singular part corresponding to u is larger than
the one corresponding to v. Having this in mind it is not surprising that the non-pluripolar
mass is monotone with respect to singularity types. This is the content of the following result in
[DDNL18b]:
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Theorem 1.1. For each p ∈ {1, ..., n}, let up, vp ∈ PSH(X, θp) be such that up � vp. Then∫
X

(θ1 + ddcu1) ∧ ... ∧ (θn + ddcun) ≤
∫
X

(θ1 + ddcv1) ∧ ... ∧ (θn + ddcvn).

The result was conjectured in [BEGZ10] and proved by Witt-Nyström [WN19b] in the case
when the θj (and uj) are equal. A simplified proof has been recently given in [Lu20], [LN20].

2. Relative full mass classes

From Theorem 1.1 we know that the total mass of θnu and θnv are equal if u and v have the
same singularities, but the reverse direction does not hold. For each φ ∈ PSH(X, θ) we define

E(X, θ, φ) :=

{
u ∈ PSH(X, θ) : u � φ,

∫
X

θnu =

∫
X

θnφ

}
.

In case φ = 0 and θ = ω, we simply denote the class E(X,ω, 0) by E(X,ω). This is the full mass
class considered in [GZ07]. As shown in [GZ07], [CGZ08] there are many unbounded functions
in E(X,ω): −(−u)p ∈ E(X,ω) for any 0 < p < 1 and u ∈ PSH(X,ω) with u ≤ −1.

A natural question is whether there is a maximal element in E(X, θ, φ). It turns out that the
existence of such a potential implies that φ has model type singularities. The latter is defined
via an envelope construction due to Ross-Witt Nyström [RWN14] and Rashkovskii-Sigurdsson
[RS05] that we now recall. For each Lebesgue measurable function f on X, we define

Pθ(f) := (sup{u ∈ PSH(X, θ) : u ≤ f quasi everywhere on X})∗ .

Here, quasi everywhere means outside a pluripolar set, i.e. a set contained in the −∞-locus of
some v ∈ PSH(X,ω). If f = min(u, v), we will simply write Pθ(min(u, v)) = Pθ(u, v).

Definition 1.2. For a function φ ∈ PSH(X, θ) we define

Pθ[φ] :=

(
lim

t→+∞
Pθ(min(φ+ t, 0))

)∗
.

A function φ ∈ PSH(X, θ) is a model potential if Pθ[φ] = φ and
∫
X
θnφ > 0.

If f is lower semicontinuous, by a balayage process one can show that the Monge-Ampère
measure (θ+ ddcPθ(f))n is supported on the contact set {Pθ(f) = f}. For more general obstacles
f , we proved the following in [GLZ19a]:

Lemma 1.3. If f is quasi lower semicontinuous on X and Pθ(f) ∈ PSH(X, θ), then (θ +
ddcPθ(f))n is supported on the contact set {Pθ(f) = f}. In particular, if f = min(u, v) with
u, v ∈ PSH(X, θ), then

(θ + ddcPθ(u, v))n ≤ 1{Pθ(u,v)=u}θ
n
u + 1{Pθ(u,v)=v}θ

n
v .

Here, we say that f is quasi lower semicontinuous if for each ε > 0 there exists an open set U
of small capacity Capω(U) < ε, such that f |X\U is lower semicontinuous. If f is quasi lsc, there
exists a decreasing sequence of lsc functions converging to f quasi everywhere. We also stress
that the regularity of f in Lemma 1.3 is necessary. For a counter example, we take f to be 0
in some small open ball B and +∞ on X \ B. If (θ + ddcPθ(f))n is supported in the contact
set D = {Pθ(f) = f} ⊂ B then

∫
X

(θ + ddcPθ(f))n ≤
∫
B
θn. But Pθ(f) ' Vθ, so the total mass∫

X
(θ + ddcPθ(f))n must be the volume of {θ}.

An important consequence of Lemma 1.3 is that if u, v are two supersolutions:

(θ + ddcu)n ≤ euµ , (θ + ddcv)n ≤ evµ,
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then the envelope Pθ(u, v) is also a supersolution. Building on this idea we initiated in [GLZ19a]
a supersolution method to solve complex Monge-Ampère equations by taking the envelope of
supersolutions:

Pθ(inf{u supersolution}).
An important tool in pluripotential theory is the local comparison principle of Bedford-Taylor

[BT82] for bounded psh functions. The global version for the class E(X,ω) was given by Guedj-
Zeriahi in [GZ07]. As a consequence of Theorem 1.1 we proved in [DDNL18b] that it also holds
for relative full mass classes.

Proposition 1.4 (Comparison principle). If u, v ∈ E(X, θ, φ) then∫
{v<u}

(θ + ddcu)n ≤
∫
{v<u}

(θ + ddcv)n.

From the comparison principle and the resolution of the Monge-Ampère equation we obtained
the following domination principle in [DDNL18b] which is a crucial tool for later developments.

Lemma 1.5 (Domination principle). Assume u, v ∈ E(X, θ, φ) and φ ∈ PSH(X, θ) with∫
X
θnφ > 0.

(1) If 1{u<v}θ
n
u ≤ c1{u<v}θnv for some 0 ≤ c < 1, then u ≥ v.

(2) In particular, if θnu ≥ eu−vθnv then u ≤ v.

If θ is semipositive then Vθ = 0 and the Monge-Ampère measure (θ + ddcVθ)
n = θn is very

regular. In an influential work [Ber19] Berman introduced a regularization process for the
envelope Vθ by solving a family of Aubin-Yau equations parametrized by large β > 0:

(1.1)

(
θ +

1

β
ω + ddcuβ

)n
= eβuβdV.

There are several applications of Berman’s β-convergence method. We prove in [LN15] that sin-
gular (ω,m)-subharmonic functions on compact Kähler manifolds can be smoothly approximated.
Chu-Zhou [CZ19], Tosatti [Tos18] independently prove optimal regularity of the Monge-Ampère
envelope by following Berman’s scheme. We show in [BL18] that the twisted Kähler-Ricci flow
similarly parametrized as above converges to a flow of moving free boundaries. In [GLZ19a] we
use Berman’s method to show that the psh envelope of a viscosity supersolution is a pluripotential
supersolution, emphasizing an intimate relation between the two theories.

In case θ is additionally nef, the solutions uβ to (1.1) are smooth and by establishing a

uniform Laplacian estimate locally in the ample locus of {θ}, Berman showed that Vθ is C1,1̄
loc in

Amp({θ}). In particular, (θ+ ddcVθ)
n = 1{Vθ=0}θ

n. In the same work Berman showed that for a
general big class the inequality (θ + ddcVθ)

n ≤ 1{Vθ=0}θ
n holds.

We proved in [DDNL18b] that the same property holds if we replace Vθ by any model
potential.

Lemma 1.6. If u ∈ PSH(X, θ) then (θ + ddcPθ[u])n ≤ 1{Pθ[u]=0}θ
n.

In fact, it was recently proved in [DNT19] that the inequality above is actually an equality.
It is natural to ask the following question:

Question 1. Assume u ≤ v are bounded ω-psh functions. Under what condition do we have

1{u=v}(ω + ddcu)n = 1{u=v}(ω + ddcv)n?

There are counterexamples to the equality above when (ω + ddcv)n does not have a density.
The expectation is thus that it holds when (ω + ddcv)n is absolutely continuous with respect to
Lebesgue measure.



3. RELATIVE L∞ ESTIMATES 15

A direct consequence of the above analysis and the domination principle is the following
property of model potentials:

Proposition 1.7. If u ∈ PSH(X, θ) and
∫
X
θnu > 0 then φ := Pθ[u] is a model potential. If

φ is a model potential and u ∈ PSH(X, θ) with u � φ, then u− supX u ≤ φ.

In particular, if
∫
X
θnu > 0 then P [P [u]] = P [u]. We are not aware of any example showing

that the equality does not hold.

Conjecture 1.8. For any u ∈ PSH(X, θ) we have Pθ[Pθ[u]] = Pθ[u].

An important consequence of the monotonicity theorem is that if {θ} is nef, the potentials in
E(X, θ) have zero Lelong number everywhere. This is one of our main results in [DDNL18c],
positively answering an open question in [DGZ16]:

Theorem 1.9. Assume {θ} is a big and nef class. If u ∈ E(X, θ) and θ ≤ ω, then u ∈ E(X,ω).
In particular, the Lelong number of u is zero everywhere on X.

The vanishing of the Lelong numbers of functions in E(X, θ) was proved in [GZ07] when θ is
Kähler and in [BBE+19] when θ is the pull back of a Kähler form on a normal Kähler variety
via a resolution of singularities.

3. Relative L∞ estimates

We consider the complex Monge-Ampère equation

(ω + ddcϕ)n = fdV,

where 0 ≤ f ∈ L1(X) is such that
∫
X
fdV =

∫
X
ωn. It follows from [GZ07] and [Din09]

that there exists a unique normalized solution ϕ ∈ E(X,ω). If f belongs to Lp(X) for some
p > 1 (or some Orlicz class with fast growth at infinity), it follows from Ko lodziej’s work
[Ko l98] that ϕ is bounded, and continuous. His approach relies on the Monge-Ampère capacity
and Bedford-Taylor’s comparison principle. This technique has been further generalized in
[EGZ09, EGZ08, DP10, BEGZ10] in order to deal with less positive or collapsing classes.

It is very natural to look for a similar result when the density f is merely smooth and positive
on the complement of some divisor D but not in Lp for any p > 1. In such a situation, a reasonable
expectation is that ϕ is locally bounded away from D with a uniform relative L∞-estimate of
the form ϕ ≥ ψ − C, where ψ is some given quasi-psh function. In [DNL17a] we proved that
this type of estimate does hold when the blow up behaviour of f is controlled by e|ψ|, for some
quasi-psh function ψ.

Theorem 1.10. Assume f ≤ e−ψ for some quasi-psh function ψ. Then, for each a ∈ (0, 1),

ϕ− sup
X
ϕ ≥ aψ − C,

where C is a constant depending on upper bound for p,
∫
X
e−2u/a, a−1.

It follows from [GZ07] and Skoda’s integrability theorem [Sko72], [Zer01], that
∫
X
e−2u/adV

is uniformly bounded.
The proof uses the generalized Monge-Ampère capacity

Capθ,ψ(E) := sup

{∫
E

(θ + ddcv)n : v ∈ PSH(X,ω), ψ − 1 ≤ v ≤ ψ
}
,

which was further investigated in [DNL15]. In [Lu20], we proved that all these capacities are
uniformly comparable, yielding a simple proof of the integration by parts formula, an essential
tool in the variational approach to solve complex Monge-Ampère equations.
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Building on this relative L∞ estimate we proved in [DNL17a] that the solution ϕ is smooth

in X \D when f is smooth there and can be written as f = eψ
+−ψ− , for some quasi-psh functions

ψ±. Of course, we expect that the latter condition can be removed:

Question 2. Assume f ∈ C∞(X \D) and f ∈ L1(X). Do we have ϕ ∈ C∞(X \D)?

By a similar idea we prove in [DDNL21a] the following relative estimate involving functions
in relative full mass classes.

Theorem 1.11. Fix a ∈ (0, 1), A > 0, ψ ∈ PSH(X, θ), and f ∈ Lp(X, dV ), p > 1. Assume
that

(1.2)

∫
E

fdV ≤ A(Capθ,ψ(E))2,

for all Borel sets E ⊂ X. If u ∈ PSH(X, θ) verifies ψ � Pθ[u] and

(1.3) (θ + ddcu)n ≤ a(θ + ddcψ)n + fdV,

then for a uniform constant C = C(‖f‖p, p, (1− a)−1, A) we have

u− sup
X
u ≥ ψ − sup

X
ψ − C.

As shown in [DDN21], there is an alternative proof of the L∞ estimate in the breakthrough
articles of Chen-Cheng [CC21a, CC21b] relying on our relative estimate above.

The condition (1.2) is satisfied when e.g. ψ is a model potential or ψ is strictly θ-psh. In
(1.3) the assumption a ∈ (0, 1) is essential for our proof. Whether one can take a = 1 is a widely
open question even in the case when ψ is bounded.

Question 3 (Ko lodziej). Assume ψ is a bounded ω-psh function and u ∈ E(X,ω) satisfies

(ω + ddcu)n ≤ C(ω + ddcψ)n,

for some constant C > 0. Is u also bounded?

4. Solving Monge-Ampère equations

In this section we focus on the resolution of complex Monge-Ampère equations

(MA) (θ + ddcϕ)n = eλϕµ, ϕ ∈ E(X, θ, φ),

where µ is a non-pluripolar positive Radon measure on X, φ is a model potential and λ ≥ 0.
When λ = 0, a necessary condition for existence of solutions is that µ(X) =

∫
X

(θ + ddcφ)n.
When the model potential φ = Vθ has minimal singularities, it was shown in [GZ07, BEGZ10,
BBGZ13] that there exists a solution, which turns out to be unique by Dinew’s work [Din09].
In [DDNL18b, DDNL21a] we generalized these results for arbitrary model potential φ.

Theorem 1.12. The equation (MA) admits a unique solution.

In case λ > 0, the uniqueness follows from the domination principle. When λ = 0, the
uniqueness is understood in the following sense: if u and v are two solutions then u − v is
constant. This can be proved by following Dinew’s argument [Din09]. A new proof using
quasi-psh envelopes has been provided in [LN20].

In case µ has finite energy, i.e. E1(X, θ, φ) ⊂ L1(µ), it can be shown that the solution φ
belongs to the finite energy class E1(X, θ, φ) defined by

E1(X, θ, φ) :=

{
u ∈ E(X, θ, φ) :

∫
X

(u− φ)θnu > −∞
}
.
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We proved this result in [BBLL19] when θ = ω is Kähler, and applied it to give a large deviation
principle in the setting of weighted pluripotential theory arising from polynomials associated to a
convex body P in (R+)d.

We briefly describe the proof of the existence part for λ = 0, µ = fdV with f ∈ Lp(X, dV ),
p > 1, which is inspired by the supersolution method introduced in [GLZ19a]. For each a ∈ (0, 1),
t > 0, using [BEGZ10] we solve

(θ + ddcϕa,t)
n = c(a)µ+ a1{φ≤Vθ−t}(θ + ddc max(φ, Vθ − t))n,

with ϕa,t ∈ E(X, θ), supX ϕa,t = 0. Here, c(a) > 0 is a normalization constant ensuring that the
total mass of the LHS measure is Vol(θ). It is not hard to see that c(a)→ 1 as a→ 1. We next
want to take the envelope Pθ(ϕa,j , ϕa,j+1....). To ensure that it is not identically −∞, we need a
relative L∞ estimate of type

ϕa,t ≥ φ− C,
where C does not depend on t. This is provided by Theorem 1.11 since a < 1. Using Lemma 1.3
we can then show that the function ϕa := (limj→+∞ Pθ(ϕa,j , uϕ,j+1, ...))

∗ verifies

φ− C ≤ ϕa, and (θ + ddcϕa)n ≤ c(a)µ.

We next use the same envelope construction and let a→ 1 to get ϕ ∈ PSH(X, θ), with φ � ϕ and

(θ + ddcϕ)n ≤ µ.

We finally use the monotonicity of mass to conclude.
When µ = fdV for some f ∈ Lp, p > 1, our relative estimate shows that the solution ϕ has

the same singularities as φ. In case f is smooth it is expected that the solution ϕ is smooth where
φ is. But even in the case φ = Vθ, this is a widely open question.

Question 4. Assume φ is quite regular (e.g. smooth/continuous) in some Zariski open set
U and f > 0 is regular (smooth/continuous) on X. Is ϕ smooth/continuous in U?

5. Log-concavity of volume

For a closed positive (1, 1)-current T , one can find a closed smooth real (1, 1)-form θ and a
function u ∈ PSH(X, θ) such that T = θ + ddcu. The (non-pluripolar) volume of T is defined as

Vol(T ) :=

∫
X

(θ + ddcu)n.

If {θ} is big then the non-pluripolar Monge-Ampère measure (θ + ddcu)n is well-defined, hence
so is Vol(T ). Otherwise, we simply set Vol(T ) = 0. By solving Monge-Ampère equations with
prescribed singularities, in [DDNL21a] we confirmed a conjecture of Boucksom-Eyssidieux-
Guedj-Zeriahi [BEGZ10]:

Theorem 1.13. The function T 7→ log
∫
X
Tn, defined on the cone of closed positive (1, 1)-

currents, is concave.

By an elementary argument the proof is reduced to showing that∫
X

T1 ∧ .... ∧ Tn ≥
n∏
j=1

Vol(Tj)
1/n,

if Tj = θj + ddcuj ≥ 0 with {θj} big and uj ∈ PSH(X, θj). If one of the Tj has zero mass, the
right-hand side will be zero and we are done. We can thus fix, pour each j, a model potential
φj = Pθj [uj ] ∈ PSH(X, θj). We fix a probability volume form dV and solve

(θj + ddcvj)
n = cjdV, vj ∈ E(X, θj , φj),
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where cj =
∫
X

(θj + ddcφj)
n = Vol(Tj). By the mixed Monge-Ampère inequality, we have

(θj + ddcv1) ∧ ... ∧ (θn + ddcvn) ≥ (c1...cn)1/ndV.

Integrating this over X we obtained the result.
The key of this proof is the resolution of the complex Monge-Ampère equation with prescribed

singularities obtained in [DDNL21a]. One can also solve this equation by a variational method,
introduced in [BBGZ13], as explained in [DDNL18b], [Xia19], [Lu20].



CHAPTER 2

Pluripotential theory on compact Hermitian manifolds

In this chapter, we present recent joint works with T.T. Phung and T.D. Tô [LPT20], and V.
Guedj [GL21a, GL21b, GL21c], and discuss several open questions for possible future projects.

1. Complex Monge-Ampère equations

The Monge-Ampère equation on compact complex manifolds was first studied in the eighties
by Cherrier [Che87] who tried to solve the Hermitian analogue of Yau’s theorem. He succeeded
in giving a priori C2 estimates, but only provided an L∞ estimate under a restrictive condition.
After several attempts by Hanani [Han96], Guan-Li [GL10], the missing L∞ estimate has been
established by Tosatti-Weinkove [TW10], who solved in full generality the following analogue of
Yau’s theorem:

Theorem 2.1. [TW10] Let (X,ωX) be a compact Hermitian manifold of dimension n and
0 < f is a smooth function on X. Then there exists a unique couple ϕ, c such that c > 0 and
ω + ddcϕ > 0, solving

(ωX + ddcϕ)n = cfωnX .

In contrast with the Kähler case, here the mysterious constant c = cf depends heavily on f .
We have shown in [LPT20] that cf varies continuously in f :

Proposition 2.2. Assume that 0 ≤ f, g ∈ Lp(X) for some p > 1. Then

|cf − cg| ≤ C‖f − g‖1/np ,

where C > 0 is a constant depending on p, an upper bound for ‖f‖p, ‖g‖p and a positive lower
bound for ‖f‖1/n, ‖g‖1/n.

After the appearance of [TW10], the study of complex Monge-Ampère equations on compact
Hermitian manifolds has gained considerable interest. The smooth Gauduchon-Calabi-Yau conjec-
ture has been further solved by Székelyhidi-Tosatti-Weinkove [STW17], while the pluripotential
theory has been partially extended by Dinew, Ko lodziej, and Nguyen [DK12, KN15, Din16,
KN19].

The main difficulty in establishing the L∞-estimate in [TW10] and [DK12] lies in the fact
that the reference form is not closed, which produces many extra terms to handle when using Stokes
theorem. It is also highly non trivial to get uniform bounds on the total Monge-Ampère volumes
involved in the estimates. B locki has provided a different approach [B lo05, B lo11] which is based
on the Alexandroff-Bakelman-Pucci maximum principle and a stability estimate due to Cheng-Yau
(L2-case) and Ko lodziej (Lp-case). B locki’s method works in the Hermitian case and has been
generalized to various settings by Székelehydi, Tosatti and Weinkove [STW17, Szé18, TW18].

In [GL21c] we have provided a new and direct alternative proof of this a priori estimate,
relying only on the local resolution of the classical Dirichlet problem for the complex Monge-
Ampère equation, and twisting the right hand side with an exponential.

All the above methods require the reference form to be strictly positive. In studying Yau’s
analogue on singular varieties, one is lead to consider forms which are merely semipositives.
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Given a semi-positive form ω, we introduce several positivity properties:

• we say ω is non-collapsing if there is no bounded ω-plurisubharmonic function u such
that (ω + ddcu)n ≡ 0;

• we say ω is uniformly non-collapsing if

v−(ω) := inf

{∫
X

(ω + ddcu)n : u ∈ PSH(X,ω) ∩ L∞(X)

}
> 0.

In the same work [GL21c] we have also introduced yet another new approach for establishing
uniform a priori estimates, which applies in the context of semipositive forms once the Monge-
Ampère volume v−(ω) is under control:

Theorem 2.3. Let ω be semi-positive and uniformly non-collapsing. Let µ be a probability
measure such that PSH(X,ω) ⊂ Lm(µ) for some m > n. Any solution ϕ ∈ PSH(X,ω) ∩ L∞(X)
to

(ω + ddcϕ)n = cµ,

where c > 0, satisfies

OscX(ϕ) ≤ T
for some uniform constant T which depends on an upper bound on c

v−(ω) and

Am(µ) := sup

{(∫
X

(−ψ)mdµ

) 1
m

: ψ ∈ PSH(X,ω) with sup
X
ψ = 0

}
.

While the pluripotential approach consists in measuring the Monge-Ampère capacity of
sublevel sets (ϕ < −t), we directly measure the volume of the latter, avoiding delicate integration
by parts. This result covers the case when µ = fdVX is absolutely continuous with respect to
Lebesgue measure, with density f belonging to Lp, p > 1, or to an appropriate Orlicz class Lw

(for some convex weight w with “fast growth” at infinity), thus partially extending the case of
Hermitian forms treated by Dinew-Ko lodziej [DK12] and Ko lodziej-Nguyen [KN15, KN20].

The non-collapsing condition is the minimal positivity condition one should require. We
showed in [GL21b] that it implies the domination principle, a useful extension of the classical
maximum principle. We also provided a simple example showing that having positive volume∫
X
ωn > 0 does not prevent from being collapsing. We also showed in [GL21b] that ω is uniformly

non-collapsing if one restricts to ω-psh functions that are uniformly bounded by a fixed constant
M :

v−M (ω) := inf

{∫
X

(ω + ddcu)n : u ∈ PSH(X,ω) with −M ≤ u ≤ 0

}
> 0.

The proof relies exclusively on the quasi-psh envelope. Given this it is natural to ask

Question 5. Do we have an explicit lower bound for v−M (ω) in terms of M?

We next focus on solving the complex Monge-Ampère equations with a semi-positive reference
form ω. By analogy with the Kähler setting, we say that ω is big if there exists an ω-psh function
with analytic singularities ρ such that ω + ddcρ ≥ δωX for some δ > 0.

Theorem 2.4. Let ω be a semi-positive (1, 1) form which is either big or such that v−(ω) > 0.
Fix 0 ≤ f ∈ Lp(dVX), where p > 1 and

∫
X
fdVX = 1. Then

• there exists a unique constant c(ω, f) > 0 and a bounded ω-psh function ϕ such that
(ω + ddcϕ)n = c(ω, f)fdVX ;
• for any λ > 0 there exists a unique ϕλ ∈ PSH(X,ω) ∩ L∞(X) such that

(ω + ddcϕλ)n = eλϕλfdVX .
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When ω is Hermitian, this result has been proved by Ko lodziej-Nguyen [KN15] and Nguyen
[Ngu16], who also proved uniqueness of the solution for λ > 0.

We next apply our results to solve a singular version of the Hermitian Calabi-Yau theorem.
Let V be a compact complex variety with log-terminal singularities, i.e. V is a normal complex
space such that the canonical bundle KV is Q-Cartier and for some (equivalently any) resolution
of singularities π : X → V , we have

KX = π∗KV +
∑
i

aiEi,

where the Ei’s are exceptional divisors with simple normal crossings, and the rational coefficients
ai (the discrepancies) satisfy ai > −1.

Given φ a smooth metric of KV and σ a non vanishing local holomorphic section of K⊗rV , we
consider the “adapted volume form”

µφ :=

(
irn

2

σ ∧ σ
|σ|2rφ

) 1
r

.

This measure is independent of the choice of σ, and it has finite mass on V , since the singularities
are log-terminal. Given ωV a Hermitian form on V , there exists a unique metric φ = φ(ωV ) on
KV such that

ωnV = µφ.

Definition 2.5. The Ricci curvature form of ωV is Ric(ωV ) := −ddcφ.

Recall that the Bott-Chern space H1,1
BC(V,R) is the space of closed real (1, 1)-forms modulo

the image of ddc acting on real functions. The form Ric(ωV ) determines a class cBC1 (V ) which

maps to the usual Chern class c1(V ) under the natural surjection H1,1
BC(V,R)→ H1,1(V,R).

By analogy with the Calabi conjecture from Kähler geometry, it is natural to wonder whether
conversely any representative η ∈ cBC1 (V ) can be realised as the Ricci curvature form of a
Hermitian metric ωV . In [GL21c] we provided a positive answer:

Theorem 2.6. Let V be a compact Hermitian variety with log terminal singularities equipped
with a Hermitian form ωV . For every smooth closed real (1, 1)-form η in cBC1 (V ), there exists a
function ϕ ∈ PSH(V, ωV ) such that

• ϕ is globally bounded on V and smooth in Vreg;
• ωV + ddcϕ is a Hermitian form and Ric(ωV + ddcϕ) = η in Vreg.

In particular if cBC1 (V ) = 0, any Hermitian form ωV is “ddc-cohomologous” to a Ricci flat
Hermitian current. Understanding the asymptotic behavior of these singular Ricci flat currents
near the singularities of V is, as in the Kähler case, an important open problem.

Passing to a resolution of singularities π : X → V , the equation

Ric(ωV + ddcϕ) = η

is translated into the following complex Monge-Ampère equation

(ω + ddcu)n = fdVX ,

where ω := π∗ωV is a semipositive smooth (1, 1)-form which is big, and f = eψ
+−ψ− has poles

and zeros along a simple normal crossing divisor. The existence of ϕ in Theorem 2.6 is thus a
consequence of Theorem 2.4, while the smoothness is obtained via a C2-estimate building on
works of [GL10], [TW18]. The uniqueness of u is known only when the density f is strictly
positive, and is a consequence of our stability result in [GL21c] and [LPT20]:
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Theorem 2.7. Assume ω is either big or uniformly non-collapsing. Fix f1, f2 ∈ Lp(dVX)

with p > 1 and A−1 ≤
(∫

X
f

1
n
i dVX

)n
≤
(∫
X
fpi dVX

) 1
p ≤ A, for some constant A > 1. Assume

ϕ1, ϕ2 ∈ PSH(X,ω) ∩ L∞(X) satisfy

(ω + ddcϕi)
n = eλϕifidVX .

(1) If λ > 0, then ||ϕ1 − ϕ2||∞ ≤ T ||f1 − f2||
1
n , where T is a constant which depends on

n, p and upper bounds for A, λ−1, λ.

(2) If λ = 0 and f1 ≥ c0 > 0, then the same estimate holds with T depending on n, p and
upper bounds for A, c−1

0 .

In particular, there is at most one bounded ω-psh solution ϕ to the equation (ω + ddcϕ)n =
eλϕf dVX in case λ > 0, or when λ = 0 and f ≥ c0 > 0. The idea of the proof of (1) comes from
[GLZ18] where we used a perturbation argument going back to Ko lodziej [Ko l96].

When ω is Hermitian such a stability estimate has been provided by Ko lodziej-Nguyen for
λ = 0 [KN19]. To prove Theorem 2.7 we adapt some arguments of [LPT20], [GLZ18], who
treated the case λ > 0, and obtained refined estimates in the case λ = 0. When ω is Hermitian,
using the stability estimates above we showed in [LPT20] that the solution ϕ is Hölder continuous
with an exponent as good as in the Kähler case obtained in [DDG+14].

Theorem 2.8. Fix 0 ≤ f ∈ Lp(X), p > 1 with
∫
X
fdVX > 0. Then any solution u to

(ωX + ddcu)n = cffdVX is Hölder continuous with Hölder exponent in (0, pn), where pn = 2
nq+1 .

This result has been proved in [KN19] for f ≥ c0 > 0 strictly positive and with a less precise
exponent. The new input of our approach is that we use the stability estimate for λ = 1 which
allows to avoid the strict positivity assumption on f and to improve the Hölder exponent.

2. Bounds on Monge-Ampère volumes

Bounding from below v−(ω) is a very delicate issue. When ω is closed, simple integration
by parts reveals that v−(ω) =

∫
X
ωn is positive as soon as ω is positive at some point; Demailly

and Păun showed in [DP04] that in this case ω contains a Kähler current. In the same paper,
they have also proposed the following conjecture (see [DP04, Conjecture 0.8]): if a nef class

α ∈ H1,1
BC(X,R) satisfies αn > 0, then it should contain a Kähler current, i.e. a positive closed

(1, 1)-current which dominates a Hermitian form. Recall that the Bott-Chern cohomology group

H1,1
BC(X,R) is the quotient of closed real smooth (1, 1)-forms, by the image of C∞(X,R) under the

ddc-operator. Demailly-Păun’s conjecture is a transcendental version of a conjecture of Grauert-
Riemenschneider [GR70] who asked whether the existence of a semi-positive holomorphic line
bundle L→ X with c1(L)n > 0 implies that X is Moishezon (i.e. bimeromorphically equivalent
to a projective manifold). This conjecture has been solved positively by Siu in [Siu84] (with
complements by [Siu85] and Demailly [Dem87]).

This influential conjecture has been further reinforced by Boucksom-Demailly-Păun-Peternell
who proposed a weak transcendental form of Demailly’s holomorphic Morse inequalities [BDPP13,
Conjecture 10.1]. This stronger conjecture has been solved recently by Witt-Nyström when X is
projective [WN19a].

Building on works of Chiose [Chi16a], Xiao [Xia15] and Popovici [Pop16] we have obtained
in [GL21b] the following answer to the qualitative part of these conjectures:

Theorem 2.9. Let α, β ∈ H1,1
BC(X,C) be nef classes such that αn > nαn−1 · β. The following

properties are equivalent:

(1) α− β contains a Kähler current;
(2) v+(ωX) < +∞;
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(3) X belongs to the Fujiki class.

The Fujiki class is the class of compact complex manifolds that are bimeromorphically
equivalent to Kähler manifolds.

Here

v+(ωX) := sup

{∫
X

(ωX + ddcϕ)n : ϕ ∈ PSH(X,ωX) ∩ L∞(X)

}
.

Building on works of Chiose [Chi16b] and Guan-Li [GL10] we have provided several results
which ensure that the condition v+(ωX) < +∞ is satisfied:

• for any compact complex manifold X of dimension n ≤ 2;
• for any threefold which admits a pluriclosed metric ddcω̃X = 0;
• as soon as there exists a metric ω̃X such that ddcω̃X = 0 and ddcω̃2

X = 0;
• as soon as X belongs to the Fujiki class C.

More generally, we have proved in [GL21b] the following:

Theorem 2.10. The condition v+(ωX) < +∞ is independent of the choice of ωX ; it is
moreover invariant under bimeromorphic transformation of compact complex manifolds.

The condition v−(ωX) > 0 is also independent of the choice of ωX and invariant under
bimeromorphic transformation of compact complex manifolds.

In particular these conditions both hold true if X belongs to the Fujiki class.

We are not aware of a single example of a compact complex manifold such that v+(ωX) = +∞
or v−(ωX) = 0. This is an important open problem.

Question 6. Does there exist a compact Hermitian manifold X such that v−(ωX) = 0 or
v+(ωX) = +∞?

Question 7. If X,Y are two compact complex manifolds which satisfy v−(ωX) > 0 and
v−(ωY ) > 0 (respectively v+(ωX) < +∞ and v+(ωY ) < +∞), does the same property holds for
X × Y ?

The proof of Theorem 2.10 relies on a fine use of quasi-plurisubharmonic envelopes, which
have been systematically studied in [GLZ19a] in the Kähler framework.

A consequence of our analysis is that the conjectures of Demailly-Păun and Boucksom-
Demailly-Păun-Peternell can be extended to non closed forms, so that it makes sense outside the
Fujiki class. Progresses in the theory of complex Monge-Ampère equations on compact Hermitian
manifolds have indeed shown that it is useful to consider ddc-perturbations of non closed nef
forms.

As we have seen the non-pluripolar Monge-Ampère measure has found many impressive
applications. It is natural to define similar notions in the Hermitian setting. The situation is
however quite complicated. One may try to define

MA(u) := lim
t→+∞

1{u>−t}(ω + ddc max(u,−t))n,

having in mind that the family of measures is increasing in t. But it is not clear whether the total
mass is bounded. Another difficulty we have to deal with is the vanishing of the Monge-Ampère
constant. Given 0 ≤ f ∈ L1(X, dV ) we can define c(ω, f) := limj→+∞ c(ω,min(f, j)) ≥ 0.

Question 8. Does there exist 0 ≤ f ∈ L1(X, dV ) with c(ω, f) = 0?



CHAPTER 3

Parabolic complex Monge-Ampère equations

1. Introduction

The Ricci flow in Riemannian geometry was first introduced by Hamilton [Ham82]. It is
a geometric flow evolving a Riemannian metric by its Ricci curvature. As observed by Bando,
starting from a Kähler metric the Ricci flow remains Kähler and it is called the Kähler-Ricci flow.
The main point is that the flow can be written as a parabolic complex Monge-Ampère equation.

After the spectacular use of the Ricci flow by Perelman to settle the Poincaré and Geometriza-
tion conjectures, it is expected that the Kähler-Ricci flow can be used similarly to give a geometric
classification of complex algebraic and Kähler manifolds, and produce canonical metrics at the
same time.

The classification of complex projective surfaces was established by the Italian school in the
19th century. If X is a smooth complex projective surface of non-negative Kodaira dimension
then there exists a smooth projective manifold Y birational to X such that the canonical bundle
of Y is nef. If the Kodaira dimension of X is −∞ then X is birational to either P2 or a ruled
surface. The Minimal Model Program (MMP) aims at generalizing this classification in higher
dimension. The problem is more complicated since there exist threefolds which do not have a
smooth minimal model. For this reason we have to allow singularities and work with varieties.
Given a complex projective manifold X of non negative Kodaira dimension the MMP predicts
that there exists a (possibly singular) variety Y birational to X such that the canonical bundle
of Y is nef. Such a variety is called a minimal model. The general strategy is as follows: one
starts with a smooth complex projective manifold X. If the canonical divisor KX is not nef then
one tries to contract a negative curve on X to obtain a new variety Y which is possibly singular
in general. If the singularity is mild (terminal) then one repeats the procedure on Y . If the
singularity is worse then a codimension-two surgery, called a flip, is needed and one restarts the
procedure finitely many times until reaching a minimal model. A challenging problem is to prove
the existence of flips. This program was achieved in dimension three mainly by S. Mori [Mor88].

In a recent celebrated work, Birkar-Cascini-Hacon-Mckernan [BCHM10] showed the existence
of minimal models for a large class of varieties called varieties of general type. Completing this
program and extending it to Kähler varieties has attracted the attention of many research
communities (algebraic, differential, analytic geometers).

J. Song and G. Tian [ST17] have proposed an ambitious program, combining the Minimal
Model Program and Hamilton-Perelman approach to the Poincaré conjecture. The expectation is
that, starting from a smooth projective variety with non-negative Kodaira dimension the flow
will deform it several times, restart on the new varieties, and eventually reach a minimal model.

It is classical that the (twisted) Kähler-Ricci flow can be reduced to a nonlinear parabolic
scalar equation in the potential ϕ, of the form

(3.1) (ωt + ddcϕt)
n = eϕ̇t+F (t,x,ϕ)gdV,

where F is a smooth function, (ωt)t≥0 is a smooth family of closed smooth (1, 1)-forms, and g is
a smooth positive density.
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For smooth initial potential ϕ0, the existence and uniqueness of the smooth flow in a maximal
interval [0, Tmax) was known by [Cao85], [Tsu88], [TZ06]. Here Tmax can be computed in terms
of cohomology classes:

Tmax := sup{t ≥ 0 : {ωt} is Kähler}.
We focus here on the case when X has non-negative Kodaira dimension. As proposed by

Song-Tian, ideally one would like to proceed as follows :

Step 1. Show that (X,ωt) converges to a midly singular Kähler variety (X1, S1) equipped with
a singular Kähler current S1, as t→ T1,max;

Step 2. Restart the flow on X1 with initial data S1;
Step 3. Repeat finitely many times to reach a minimal model Xr (KXr is nef);
Step 4. Study the long term behavior of the flow and show that (Xr, ωt) converges to a canonical

model (Xcan, ωcan), as t→ +∞.

2. Regularizing properties

The Song-Tian program is more or less complete in dimension ≤ 2 [SW13]. We next focus
on step 2, running the Kähler-Ricci flow from singular data. It can also be considered as an
alternative way to regularize currents. We assume F smooth and 0 < g is smooth but we allow
the initial potential ϕ0 to be singular. In [ST17], Song-Tian succeeded in starting the flow
from continuous ϕ0. Guedj-Zeriahi [GZ17] proved that one can start the flow from any closed
positive (1, 1)-current with zero Lelong numbers and instantly smooth it out. We have proved in
[DNL17b] that the weak solution obtained in [GZ17] is unique and it is possible to start the
flow from currents with positive Lelong numbers.

Theorem 3.1. Assume F is smooth, 0 < g is smooth, ωt = ω + tχ is an affine family of
Kähler forms for t ∈ [0, Tmax), and ϕ0 is a ω-psh function. Then there exists a solution ϕt to
the twisted Kähler-Ricci flow (3.1) in a Zariski open set of X. Moreover, if ϕ0 has zero Lelong
numbers everywhere, then the flow admits a unique smooth solution on X.

The Zariski open subset in the above Theorem is the complement of the Lelong superlevel
set {x ∈ X : ν(ϕ0, x) ≥ c}, where c > 0 depends on Tmax and the singularities of ϕ0. By
Siu’s theorem these superlevel sets are analytic subsets of X. We also showed in [DNL17b]
that the presence of positive Lelong number is an obstruction to regularizing property of the
flow: if ν(ϕ0, x) > 0 for some x ∈ X then ϕt is singular at x for small t. The proof of the first
part of Theorem 3.1 uses Demailly’s equisingular approximation together with a crucial relative
L∞-estimate via the generalized Monge-Ampère capacities [DNL17a, DNL15]. To prove the
uniqueness in case the Lelong numbers are all zero we used the semigroup property of the flow,
regularizing itself.

It is very natural to expect that the flow produces currents with analytic singularities.

Question 9. Assume ϕ0 is a ω-psh function and let ϕt the the weak solution of the complex
Monge-Ampère flow. Does ϕt have analytic singularities?

3. Singularities encountered along the flow

The varieties appearing in the MMP are often singular but the singularities are mild. For
instance, to make sense of the nefness condition of the canonical line bundle KY of a variety
Y , one needs to define the intersection numbers of KY with curves on Y . This requires KY to
be Q-Cartier. In order to use advanced tools in differential geometry it is more convenient to
work on a desingularization π : X → Y provided by Hironaka’s work [Hir64]. The canonical
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line bundle of X is then related to that of Y by the following equivalence relation of Q-Cartier
divisors

KX ≡ π∗KY +
∑

aEE,

where the sum runs over the exceptional divisors of π. For any locally defined multivalued
canonical form η on Y the holomorphic multivalued canonical form π∗η on X has poles or zeros
of order aE along E, so that the corresponding volume form decomposes as

π∗(cnη ∧ η) = ew
+−w−dV (x) =: g(x)dV (x),

where w+ =
∑
aE>0 aE log |sE |hE and w− =

∑
0>aE≥−1 aE log |sE |hE are quasi-plurisubharmonic

with ew
+

continuous. The integrability of e−w
−

depends on the size of the coefficients aE which
in turn are encoded in the singularities of Y :

• Y has canonical singularities ⇐⇒ aE ≥ 0, for all E ⇐⇒ g is continuous;
• Y has Kawamata log terminal singularities ⇐⇒ aE > −1, for all E ⇐⇒ g ∈ Lp(X), for

some p > 1;
• Y has semi-log canonical singularities ⇐⇒ aE ≥ −1.

Working on the resolution X the (weak) Kähler-Ricci flow can be written as a parabolic
complex Monge-Ampère equation of the following type:

(CMAF) (ωt + ddcut)
n = eu̇t+F (t,x,u)gdV, (t, x) ∈ (0, T )×X,

where T > 0, F is a continuous increasing function in the third variable, (ωt)t≥0 is a smooth
family of smooth closed real (1, 1)-forms, and 0 ≤ g is a density on X.

A parabolic viscosity approach has been developed in [EGZ16] allowing one to study the
behavior of the Kähler-Ricci flow on minimal models with positive Kodaira dimension and
canonical singularities [EGZ18]. Finer tools are required in order to allow worst singularities.

3.1. Kawamata log-terminal singularities. In [GLZ20a, GLZ20b] we have developed
the first steps of a parabolic pluripotential theory to study weak solutions to (CMAF) for
degenerate data. We interpret the above parabolic equation on X as a second order PDE on the
(2n+ 1)-dimensional manifold XT := (0, T )×X:

• the LHS becomes a positive Radon measure (ωt + ddcϕt)
n ∧ dt, which is well defined for

paths t 7→ ϕt of bounded ωt-psh functions [BT76, BT82],
• the RHS eϕ̇t+F (t,x,ϕ)g(x)dV (x) ∧ dt is a well-defined Radon measure if t 7→ ϕt(x) is

(locally) uniformly Lipschitz.

The local side of the theory was treated in [GLZ20a] by a direct method using Perron upper
envelopes of subsolutions, while the global side was studied in [GLZ20b] via an approximation
scheme and a priori estimates. The theory is flexible enough to allow the forms ωt to be merely
semipositive and big with a uniform lower bound ωt ≥ θ, for a fixed semipositive and big form θ.

Theorem 3.2. Let ϕ0 be a bounded ω0-psh function. Assume g ∈ Lp(X, dV ) for some p > 1
and g > 0 a.e. on X. There exists a unique parabolic potential ϕ ∈ P(XT , ω) with the following
properties:

• (t, x) 7→ ϕ(t, x) is locally bounded in [0, T [×X;
• (t, x) 7→ ϕ(t, x) is continuous in ]0, T [×Amp(θ);
• t 7→ ϕt is locally uniformly semi-concave in ]0, T [×X;
• ϕ is a pluripotential solution to (CMAF);
• ϕt → ϕ0 as t→ 0+ in L1(X) and pointwise.

Here Amp(θ) denotes the ample locus of θ, i.e. the largest Zariski open subset of X where
the cohomology class of θ behaves like a Kähler class.
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It turns out that t 7→ ϕt(x) − n(t log t − t) + Ct is increasing for some fixed C > 0. The
convergence at time zero is therefore rather strong (it is e.g. uniform in case ϕ0 is continuous).

The uniqueness is quite subtle, requiring several tools from the elliptic pluripotential theory
developed in our previous works [GLZ19b], [GLZ18]. In case g is continuous and positive, as
mentioned above there is a parabolic viscosity theory in [EGZ16]. In [GLZ21] we show that the
pluripotential solution obtained in [GLZ20b, GLZ20a] are also viscosity solutions.

The present pluripotential approach allows us to deal with non continuous data. In [GLZ20b]
we can, in particular, define a good notion of weak Kähler-Ricci flow on varieties with terminal
singularities:

Theorem 3.3. Let (Y, ω0) be a compact n-dimensional Kähler variety with log terminal
singularities and trivial first Chern class (Q-Calabi-Yau variety).

Fix S0 a positive closed current with bounded potentials, whose cohomology class is Kähler.
The Kähler-Ricci flow

∂ωt
∂t

= −Ric(ωt)

exists for all times t > 0, and deforms S0 towards the unique Ricci flat Kähler-Einstein current
ωKE cohomologous to S0, as t→ +∞.

This extends previous results of [Cao85, Tsu88, TZ06], avoiding any projectivity assumption
on X [ST17], nor any restriction on the type of singularities [EGZ16, EGZ18].

3.2. More general singularities. In relation with the MMP it is desirable to extend
[GLZ20b] to the case when g is in L1 but not in Lp, p > 1. The standard approach via
Ko lodziej’s technique breaks down in this case, and this makes the estimates along the flow quite
delicate. In fact (quasi) plurisubharmonic solutions to complex Monge-Ampère equations with
L1-densities may be unbounded and it is reasonable to establish a relative L∞ estimate similar
to the one appeared in [DDNL21a], [DNL17a].

The non-integrable case, i.e. when g /∈ L1(X), which corresponds to the log-canonical
singularities considered in [BG14], is more challenging. To build a parabolic pluripotential
theory in this context, one has to deal with unbounded quasi plurisubharmonic functions which
are outside the full mass classes considered in [BEGZ10, GZ07]. On the elliptic side, there
have been recent developments on the relative pluripotential theory [WN19b],[DDNL18b,
DDNL21a, DDNL21b]. In fact, a powerful tool in pluripotential theory is the comparison
principle of Bedford and Taylor [BT76, BT82]. Its global version [GZ07] is a simple consequence
of the invariance of the Monge-Ampère mass. For bounded functions the later simply follows
from the Stokes formula, but for unbounded ones the problem is quite involved as it requires
a more sophisticated construction [WN19b]. Building on the monotonicity of mass, several
pluripotential tools (domination principle, integration by parts, resolution of complex Monge-
Ampère equations with prescribed singularities) have been established recently, see [DDNL18b,
DDNL21a, DDNL21b], [Xia19], [Tru19, Tru20] and the previous chapter.

Given these materials we expect to prove the following:

Problem 1. Assume that X is a compact Kähler variety with semi-log canonical singularities
and big canonical divisor. Then the (normalized) pluripotential Kähler-Ricci flow exists for all
time and deforms any closed positive current towards the unique singular Kähler-Einstein metric.

Parabolic Comparison principle. The elliptic comparison principle of Bedford and
Taylor [BT76, BT82] plays a vital role in pluripotential theory. It is desirable to have its
parabolic counterpart. A version of this was obtained in [GLZ20a, GLZ20b], allowing to
prove uniqueness/stability of solutions with certain regularity under several natural assumptions.
The proof of this comparison principle relies on a regularization process which works only for
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subsolutions and does not work for supersolutions. We believe that in order to make progress in
parabolic pluripotential theory one needs to greatly improve the parabolic comparison principle.
One possible direction is to regularize supersolutions by taking inf-convolution and borrowing
ideas from the viscosity theory [EGZ11, EGZ18].

4. Big cohomology classes

We next discuss possible extensions of [GLZ20b] to the context of big cohomology classes,
i.e. when the forms ωt, t > 0 are big and not necessarily semi-positive. The latter case appears
naturally in the MMP as volume non-collapsing limit of Kähler classes. To give an idea let us
consider the normalized Kähler-Ricci flow on a projective manifold X of general type, i.e. such
that KX is big:

d

dt
ωt = −Ric(ωt)− ωt.

The flow can be run smoothly from any Kähler metric ω0 and remains smooth in the interval
[0, T ), where T is defined to be the maximal t for which the class e−t{ω0}+ (1− e−t)c1(KX) is
Kähler. The flow will certainly develop singularities at T , but as the volume is non collapsing
one expects that the flow will still survive after T and becomes singular. This expectation was
formulated as an open question in [FIK03] and a more precise conjectural picture was given in
[BT12]. One hopes to construct weak solutions for all time but uniqueness should be understood
in a relative sense, i.e. in each class of singularity types there is a unique weak solution. The
existence of a viscosity solution has been very recently proved in [Tô17]. As mentioned above
viscosity techniques have a limited scope of applications within continuous densities. Another
motivation for working with big cohomology class is the following intuition. Assume given a
singular variety Y very close to a minimal model in the sense of birational geometry. To continue
the road towards a minimal model, differential geometers may think of taking a resolution of
singularities π : X → Y and working on the smooth manifold X. The difficulty here is that the
singularities of X and Y are very different. But the Kähler-Ricci flow will help to fill in the
gap, by deforming X towards a variety simpler than Y . The issue here is that unless KX is nef
(in which case X is the minimal model we are looking for) the smooth Kähler-Ricci flow on X
stops at some finite singularity time. It is however very reasonable to hope that the evolving
cohomology class remains big and our pluripotential flow exists and eventually converges to a
canonical (singular) object. An illuminating example is when X is a Q-factorial threefold with
terminal singularities and pseudoeffective canonical bundle. The recent remarkable achievement
of A. Höring and T. Peternell [HP16] shows that X admits a minimal model. In this case it
is interesting to see how the pluripotential Kähler-Ricci flow (living in big cohomology classes)
behaves near infinity.

A global (elliptic) pluripotential theory in big cohomology classes has been developed in
the recent years in [BEGZ10, BBGZ13, DDNL18c, DDNL18b, DDNL18a, DDNL21a,
DDNL21b]. Unlike the case of semipositive classes treated in [GLZ20b], one can not hope to
approximate (ωt), where for any t, ωt is a form representing a big cohomology class, by families of
Kähler forms to perturb the equation. Therefore, a possible strategy is to use the Perron method,
considering the upper envelope of all pluripotential subsolutions to the Cauchy problem. The
local model of this problem has been recently studied in [GLZ20a]. Our idea is then to combine
[GLZ20a] and [GLZ20b] via a balayage process. The subsolutions in big cohomology classes
are typically very singular (these may lie outside the full mass classes) and again the relative
pluripotential theory developed in [DDNL18b, DDNL21a, DDNL21b] will certainly play an
important role.

Problem 2. Assume that (ωt)t∈[0,T ) is a smooth family of closed smooth real (1, 1)-forms
on X whose cohomology classes are big. Then, for each initial potential ϕ0, there exists a weak



5. ON COMPACT HERMTIAN MANIFOLDS 29

solution (ϕt)t∈[0,T ) to (CMAF) which is continuous in some Zariski open subset of X. Moreover,
the solution is unique in each singularity class.

Partial results in this direction have been very recently obtained by Q.T. Dang [Dan21] (a
Ph.D student currently supervised by V. Guedj and the author).

5. On compact Hermtian manifolds

The interest towards Hermitian geometry has grown rapidly in the last decade. It is expected
that Hermitian analogues of the Kähler-Ricci flow will play an important role in understanding
the geometry of compact complex manifolds. Recall that any compact complex manifold admits
a Hermitian metric but there are many of them which are not Kähler. It is desirable then to
extend the previous works [GLZ20b, GLZ20a] to this more general setting.

A global pluripotential theory on compact Hermitian manifolds has been recently developed
by Ko lodziej, S. Dinew, N.C. Nguyen [KN19], [Din16]. A fundamental tool which is missing in
this theory is the following version of the comparison principle:∫

{u<v}
MA(v) ≤

∫
{u<v}

MA(u),

which holds true on compact Kähler manifolds thanks to Stokes theorem. Interestingly, the
validity of this comparison principle on a compact Hermitian manifold (X,ω) is equivalent to a
geometric condition [Chi16b].

Due to a lack of an efficient comparison principle many estimates from the Kähler case break
down. In particular, uniqueness (and stability) of solutions with Lp, p > 1, densities was obtained
in [KN19], [LPT20] under a restrictive assumption that the density is strictly positive, while
the general case is widely open.

In developing an Hermitian version of the Kähler-Ricci flow with degenerate data (e.g. g is
merely in Lp, p > 1) we hope to improve the stability result in [KN19] [LPT20], and to get a
better understanding of solutions to elliptic Monge-Ampère equations. A first step in this direction
is to establish the existence of weak solutions to the complex Monge-Ampère flow (CMAF) on a
compact Hermitian manifold (X,ω). A possible strategy to do this is to perturb the equation
and establish a priori estimates as in [GLZ20b]. The existence of the unique smooth flow has
been proved by M. Gill [Gil11], see also [TW15]. It is important to note that an adaptation
of [GLZ20b] to the Hermitian case is quite delicate as many pluripotential tools used there
are missing. On the positive side, it seems that the uniqueness of weak solutions to (CMAF)
holds in the Hermitian case. This gives hope in studying the stability problem for the elliptic
Monge-Ampère equation.

Problem 3. Assume that ϕ0 is a bounded ω0-psh function on X. Prove that (CMAF) admits
a continuous pluripotential solution which is locally uniformly Lipschitz in t. This is the unique
solution with such regularity.

It has been proved in [Tô17], inspired by [GZ17], that the complex Monge-Ampère flow
instantly smoothes out any positive current with bounded potential. This interesting phenomenon
has been used in the Kähler case to regularize geodesic rays along with converging radial K-energy
[DL20] which makes progress in the Yau-Tian-Donaldson conjecture. We propose to use and
generalize [Tô17] to make progress in pluripotential theory on Hermitian manifolds. A special
metric which exists on any compact Hermitian manifold is the Gauduchon metric [Gau77]. This
metric was proved to be very useful in solving (elliptic) complex Monge-Ampère equations. An
interesting question is whether there is a notion of Gauduchon currents. More specifically, given a
positive current ω+ddcϕ with bounded potential, is there a function G such that eG(ω+ddcϕ)n−1

is ddc-closed? A possible strategy is to look at the Monge-Ampère flow ωt starting from T which
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smoothes it out immediately. Then, for each t > 0 there is a Gauduchon metric in the conformal
class of ωt. The goal is then to estimate Gt along the flow. Another related problem that we
have in mind is the uniqueness of the Monge-Ampère constants/measures. As shown in [TW10],
[KN16], [KN19], given a density 0 < f ∈ Lp, p > 1 with positive mass, one can solve the
complex Monge-Ampère equation

(ω + ddcu)n = cffω
n,

where cf > 0 is a constant. In contrast with the Kähler case, here the constant cf depends
heavily on f . A stability result for this constant has been recently established in [LPT20]. Using
the regularizing property of the Monge-Ampère flow we expect to give an answer to following
question.

Question 10. Assume u, v ∈ PSH(X,ω) ∩ L∞(X) and (ω + ddcu)n ≤ (ω + ddcv)n. Can we
infer (ω + ddcu)n = (ω + ddcv)n?

The attempts to establish stability of the complex Monge-Ampère equations in [KN19],
[LPT20] somehow boil down to answering the above question. In the Kähler case the answer is
yes since the positive measures (ω + ddcu)n and (ω + ddcv)n have the same total mass. If we
have a positive answer to Question 10 then we expect to solve the following

Problem 4. Assume that 0 ≤ f, g ∈ Lp(X) for some p > 1. Assume u and v are bounded
ω-psh functions such that

(ω + ddcu)n = fωn , (ω + ddcv)n = gωn, sup
X
u = sup

X
v = 0.

Prove that |u− v| ≤ C‖f − g‖1/np , for a uniform constant C > 0.



CHAPTER 4

Geodesic rays and constant scalar curvature Kähler metrics

This chapter is concerned with the study of geodesic rays and constant scalar curvature
metrics. We have obtained several results related to this topic in [BDL17, BDL20], [DL20],
[DLR20], [DDNL21b], [DNGL21].

1. Plurisubharmonic geodesics

Let X be a compact connected Kähler manifold of dimension n and fix a Kähler form ω. By
the ddc-lemma, any Kähler metric cohomologous to ω can be written as ωu := ω + ddcu, where u
is a smooth real function. We let

H := {ϕ ∈ C∞(X,R) : ω + ddcϕ > 0}
denote the space of Kähler potentials of ω. This is an open convex subset of the Fréchet space
C∞(X,R), so it is also a Fréchet manifold. The tangent spaceHϕ can be identified with C∞(X,R).
Mabuchi [Mab87] introduced a Riemannian structure on H by defining

〈u, v〉ϕ :=

∫
X

uv(ω + ddcϕ)n.

A geodesic is a smooth path (ϕt)t∈[0,1] minimizing the energy∫ 1

0

∫
X

|ϕ̇t|2(ω + ddcϕt)
ndt.

Semmes [Sem92] and Donaldson [Don99] have independently discovered an important
interpretation of the geodesic equation as a homogeneous degenerate complex Monge-Ampère
equation

(π∗ω + ddcΦ)n+1 = 0, on X ×D,
where D = {z ∈ C, 1 < |z| < e}, Φ(x, z) := ϕlog |z|(x), and π : X×D → X is the projection on the
first factor. This equation can be understood in the weak sense of measures following pluripotential
theory, and by Berndtsson [Ber15a] there exists a unique weak solution (ϕt)t∈[0,1] connecting
bounded ω-psh functions ϕ0, ϕ1. Even if the two end points ϕ0, ϕ1 are in H, the solution Φ is
not necessarily in H. Chen [Che00] proved that Φ is C1,1̄ on X × D. Counter examples of
Darvas-Lempert [DL12], Lempert-Vivas [LV13] show that the C1,1 regularity recently obtained
by Chu-Tosatti-Weinkove [CTW18] is optimal. In the same work Chen [Che00] proved that H
equipped with the Mabuchi d2-distance

d2(ϕ0, ϕ1) := inf

{∫ 1

0

(∫
X

|ϕ̇t|2(ω + ddcϕt)
n

)1/2

dt

}
,

where the infimun is taken over all smooth paths (ϕt) connecting ϕ0 to ϕ1, is a metric space,
which is non-positively curved in the sense of Alexandrov, and d2(ϕ0, ϕ1) is realized by the weak
geodesic segment Φ:

d2(ϕ0, ϕ1)2 =

∫
X

|ϕ̇t|2(ω + ddcϕt)
n, ∀t ∈ [0, 1].

31
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Darvas [Dar17a] introduced Lp-type Finsler metrics dp, p ≥ 1, on H:

dp(ϕ0, ϕ1) := inf

{∫ 1

0

(∫
X

|ϕ̇t|p(ω + ddcϕt)
n

)1/p

dt

}
.

Moreover, given ϕ0 and ϕ1 in H1,1̄, the set of potentials in PSH(X,ω) whose Laplacian is bounded,

according to W. He [He15] the geodesic segment is also in H1,1̄, and by Darvas [Dar15]

(4.1) dp(ϕ0, ϕ1)p :=

∫
X

|ϕ̇t|p(ω + ddcϕt)
n, t ∈ [0, 1].

As shown by an example in [Dar15], one can not expect this formula to hold for arbitrary end
points ϕ0, ϕ1. It is thus natural to ask

Question 11. Under what condition on ϕ0, ϕ1, does the formula (4.1) hold? If ϕ0, ϕ1 are
Hölder continuous, is ϕt also Hölder continuous?

Question 12. If ωnϕ0
= f0dV and ωnϕ1

= f1dV have L1-densities, does ωnϕt have L1-density?

The space (H, dp) thus obtained are geodesic metric spaces but they are not complete. Recall
that a geodesic metric space (E, d) is a metric space for which any two points can be connected
with a geodesic. By a geodesic connecting two points a, b ∈ E we understand a curve α : [0, 1]→ E
such that α(0) = a, α(1) = b and

d(α(t1), α(t2)) = |t1 − t2|d(a, b),

for any t1, t2 ∈ [0, 1]. Understanding the completion of these spaces turns out to be an important
problem in Kähler geometry. Guedj [Gue14] conjectured that the completion of (H, d2) is the
finite energy space E2(X,ω) studied earlier by Guedj-Zeriahi [GZ07]. In his landmark work
[Dar17a], [Dar15], Darvas confirmed this conjecture and extended it for the dp distance. A
novel ingredient in Darvas’ approach is the following rooftop envelope:

Pω(u, v) = Pω(min(u, v))

for u, v ∈ PSH(X,ω) (see also [DR16]). An ω-psh function u belongs to Ep if u ∈ E(X,ω) and∫
X
|u|p(ω + ddcu)n < +∞. For each u ∈ Ep, by Demailly [Dem92], B locki-Ko lodziej [BK07],

we can find a decreasing sequence (uj) in H such that uj ↘ u. If u0, u1 ∈ Ep, the sequence of
geodesic segments (uj,t)t∈[0,1] is decreasing in j as follows from the comparison principle. As the
function P (u0, u1) ∈ Ep stays below these geodesic segments, the limiting geodesic (ut) belongs
to Ep. One can then show that (ut) does not depend on the choice of the approximants, and it is
called the psh geodesic connecting u0 to u1. By Darvas [Dar15, Dar17a], the limit

dp(u0, u1) := lim
j→+∞

dp(uj,0, uj,1)

exists and it does not depend on the choice of the sequences (uj,0), (uj,1). Moreover, (Ep, dp) is a
geodesic metric space which is complete and it is the completion of (H, dp). Darvas’ construction
has been generalized to big and nef cohomology classes in [DNG18], [DNL20].

Another important achievement of [Dar15] is that dp is uniformly comparable to certain
pluripotential energy:

C(n)−1dp(u, v)p ≤
∫
X

|u− v|p(ωnu + ωnv ) ≤ C(n)dp(u, v)p.



3. QUANTIZATION OF Ep 33

2. Uniform convexity and uniqueness of geodesic segments

For any p ∈ [1,∞) it was shown in [CC21b, Theorem 1.5] that the metrics dp are “convex”:
if [0, 1] 3 t→ ut, vt ∈ Ep are two psh geodesic segments then

(4.2) dp(uλ, vλ) ≤ (1− λ)dp(u0, v0) + λdp(u1, v1), λ ∈ [0, 1].

This property is called Buseman convexity in the metric geometry literature [Jos97, Section
2.2], going back to [Bus55]. In the particular case p = 1, (4.2) was established in [BDL17,
Proposition 5.1], having applications to the convergence of the weak Calabi flow. In case p = 2,
(4.2) follows from the fact that (E2, d2) is a complete CAT(0) metric space, as shown in [Dar17a,
Theorem 1], building on estimates of [CC02, Theorem 1.1].

The CAT(0) property consists of the following estimate: if u ∈ E2 and [0, 1] 3 t→ vt ∈ E2 is
a psh geodesic segment then, for all λ ∈ [0, 1],

(4.3) d2(u, vλ)2 ≤ (1− λ)d2(u, v0)2 + λd2(u, v1)2 − λ(1− λ)d2(v0, v1)2.

As is well-known, (4.3) implies (4.2) [Jos97, Prop 2.3.2]. When restricting to a toric Kähler
manifold and toric Kähler metrics, the spaces (Ep, dp) are isometric to the flat Lp metric spaces
of convex functions defined on a convex polytope of Rn [DNG18, Section 6]. It is well known
however that CAT(0) Banach spaces are in fact Hilbert spaces [BH99], evidencing that only
(E2, d2) can be CAT(0).

Despite this, in [DL20] we have shown that adequate generalizations of the CAT(0) inequality
(4.3) do hold for the dp metrics, in case p > 1. These can be viewed as the Kähler analogs of
classical inequalities of Clarkson and Ball–Carlen–Lieb, regarding the uniform convexity of Lp

spaces [Cla36, BCL94]. Consequently, the metric spaces (Ep, dp) are uniformly convex for p > 1:

Theorem 4.1. Let p ∈ (1,∞). Suppose that u ∈ Ep, λ ∈ [0, 1] and [0, 1] 3 t→ vt ∈ Ep is a
psh geodesic segment. Then the following hold:

(i) dp(u, vλ)2 ≤ (1− λ)dp(u, v0)2 + λdp(u, v1)2 − (p− 1)λ(1− λ)dp(v0, v1)2, if 1 < p ≤ 2.

(ii) dp(u, vλ)p ≤ (1− λ)dp(u, v0)p + λdp(u, v1)p − λ
p
2 (1− λ)

p
2 dp(v0, v1)p, if 2 ≤ p.

In the particular case p = 2 this result recovers the inequalities of Calabi–Chen [CC02],
however our proof of Theorem 4.1 is very different from the argument in [CC02], as the
differentiation of dp metrics is problematic for p 6= 2.

As shown by Darvas [Dar15] d1-geodesic segments connecting the different points of (E1
ω, d1)

are not unique. However, as a consequence of the above result it follows that uniqueness of
dp-geodesic segments does hold in case p > 1.

3. Quantization of Ep

In this section we assume that {ω} is integral, i.e. ω is the curvature of an ample holomorphic
line bundle L over X. A major theme in Kähler geometry, going back to a problem of Yau
[Yau87, p. 139] and work of Tian [Tia90] thirty years ago, has been the approximation (or
“quantization”) of the infinite-dimensional space of Kähler potentials H by the finite-dimensional
spaces

Hk := {positive Hermitian forms on H0(X,Lk)},
since the Hk can be identified as subspaces of H consisting of (algebraic) Fubini–Study metrics.
It was suggested by Donaldson that the geometry of H should be approximated by the geometry
of Hk [Don01, p. 483]. In [DLR20] we investigate the quantization problem for H equipped
with Finsler metrics dp, for p ≥ 1.

We first consider different Lp Finsler structures on the space Pn of positive Hermitian n-by-n
matrices. For any h ∈ Pn, the tangent space is the space of all Hermitian n-by-n matrices. There
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is a classical Riemannian metric on Pn given by

〈η, ν〉|h :=
1

n
Tr
[
h−1ηh−1ν

]
, η, ν ∈ ThPn,

and, by a standard variational argument [Kob14, p. 195], geodesics with endpoints h0, h1 ∈ Pn
are solutions of

(4.4)
d

dt

(
h−1
t · ḣt

)
= 0, t ∈ [0, 1],

thus

d2,Pn(h0, h1) =

[
1

n

n∑
j=1

|λj |2
] 1

2

,

where
eλ1 , . . . , eλn

are the eigenvalues of h−1
0 h1. For any p ≥ 1 we introduce Finsler structures on Pn,

||ν||p,h :=

[
1

n
Tr
(
|h−1ν|p

)] 1
p

, η, ν ∈ ThPn.

We denote by dp,Pn the resulting path length metric on Pn.

Theorem 4.2. Let p ≥ 1. Solutions of (4.4) are metric geodesics of (Pn, dp,Pn), thus

dp,Pn(h0, h1) =

[
1

n

n∑
j=1

|λj |p
] 1
p

, h0, h1 ∈ Pn,

and therefore (Pn, dp,Pn) is a geodesic metric space.

Note that the geodesic equation is therefore independent of p. This result parallels an
analogous result in the infinite-dimensional setting of H: the Lp Finsler structures of H have
common geodesics as well [Dar15, Theorem 1].

Next, we fix hL, a Hermitian metric on L whose curvature is ω = Θ(hL) = −ddc log hL > 0.
We denote by hkL the k-th tensor product of the metric on Lk, the k-th tensor product of L.
Define the Hilbert map Hk : Ep → Hk by

Hk(u)(s, s) :=

∫
X

hkL(s, s)e−kuωn.

This is not quite the well-known Hilbert map often denoted by Hilbk in the literature [Don05],
since we integrate against ωn instead of ωnu . In fact, for any u ∈ Ep \ Eq, q > p, the integral∫
X
e−kuωnu is seen to be infinite for all k. On the other hand, since elements of Ep have zero

Lelong numbers, the map Hk above is well-defined. In particular, in the context of the Lp metric
completions Ep, this definition of Hk is not only the most natural, but also the only one that
makes sense.

In the opposite direction, the classical map FSk : Hk → H ⊂ Ep sends an inner product G to
the associated Fubini–Study metric restricted to X,

FSk(G) :=
1

k
log

dk∑
j=1

|ej |2hkL ,

where {ej}j=1,...,dk is a (any) G–orthonormal basis of H0(X,Lk). Equivalently, FSk(G) can be
thought of as a Bergman kernel for which the classical extremal characterization will prove handy:

FSk(G)(x) = sup
s∈H0(X,Lk),G(s,s)=1

1

k
log |s(x)|2hkL .
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Our main result in [DLR20] shows that the geometry of (Ep, dp) can be approximated by
that of finite dimensional spaces:

Theorem 4.3. For any p ≥ 1 the following hold:
(i)(Quantization of points) For v ∈ Ep we have

lim
k
dp(FSk ◦Hk(v), v) = 0.

(ii)(Quantization of distance) For v0, v1 ∈ Ep we have

lim
k
dp,k(Hk(v0),Hk(v1)) = dp(v0, v1).

(iii)(Quantization of geodesics) Suppose u0, u1 ∈ Ep and [0, 1] 3 t → ut ∈ Ep is the Lp-finite-
energy geodesic connecting u0, u1. Let [0, 1] 3 t → Ukt ∈ Hk be the Lp-Finsler geodesic joining
Uk0 = Hk(u0) and Uk1 = Hk(u1), solving (4.4). Then

lim
k
dp(FSk(Ukt ), ut) = 0 for any t ∈ [0, 1].

Theorem 4.3 (i) is the geometric pluripotential theory analogue of the asymptotic expansion
of the smooth Bergman kernel (i.e., for smooth v) due to the work of Boutet de Monvel–Sjostrand,
Catlin, Tian, and Zelditch [BdMS76, Cat99, Tia90, Zel98] (for convergence to equilibrium in
case of non-positive metrics see [Ber09, DMM16]).

Similarly, part (ii) for smooth v0, v1 and p = 2 is a result of Chen-Sun [CS12, Theorem 1.1],
using a slightly different Hk map (with an alternative proof due to Berndtsson [Ber18, Theorem
1.1] using the language of spectral measures).

Finally, part (iii) for smooth u0, u1 and p = 2 is a theorem of Berndtsson [Ber18, Theorem
1.2], extending previous work of Phong-Sturm [PS06, Theorem 1]. For smooth potentials u0, u1,
Berndtsson proved actually C0-convergence of FSk(Ukt ), which implies d2-convergence by [Dar15,
Theorem 3]. Similarly, in case of toric manifolds, Song-Zelditch [SZ10] proved C2-convergence of
FSk(Ukt ). We emphasize though that the dp-convergence in our result is optimal since a typical
element of Ep is unbounded.

Compared to the above mentioned works, in the absence of smoothness, the well known
asymptotic expansion of the smooth Bergman kernel will have only very limited use, and instead
we will have to rely almost exclusively on pluripotential theoretic and complex-algebraic tools.
In addition to techniques in finite-energy pluripotential theory, our two cornerstones are the
Ohsawa–Takegoshi extension theorem [OT87] and the quantized maximum principle of Berndtsson
[Ber18]. However to use these latter theorems, one needs to work with strongly positive (1, 1)
currents. This represents a significant difficulty, as finite-energy currents do not satisfy such
positivity property in general, and we need to develop a suitable approximation technique using
strongly positive currents. This is achieved by using quasi-psh envelopes inspired by our ideas in
[DDNL21b].

Given that the pluripotential side of our arguments above are more or less well developed in
the context of big cohomology classes, it is natural to investigate

Problem 5. Prove similar results for Ep(X, θ), where {θ} = c1(L) is a big cohomology class.

4. Geodesic rays and singularity types

A geodesic ray {ut} is a continuous curve [0,+∞) 3 t 7→ ut ∈ PSH(X,ω) such that the
restriction of ut on each finite interval is a psh geodesic segment. A bounded (respectively Ep)
psh geodesic ray is a geodesic ray consisting of bounded (respectively Ep) ω-psh functions. The
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space of bounded (respectively Ep) geodesic rays will be denoted by R∞ (respectively Rp). Given
a bounded psh geodesic ray {ut} emanating from 0, we can define the Legendre transform

ûτ := inf
t≥0

(ut − tτ), τ ∈ R.

As shown in [Dar17b] the function ûτ is either identically −∞ or a model potential. By
construction the curve τ 7→ ûτ is concave and there exists a constant C = C(u) such that for
τ ≤ −C, ûτ ≡ 0, and for τ > C, ûτ ≡ −∞. Such a curve was called a (maximal) test curve in
[RWN14]. Conversely, starting from a test curve ψτ , one can take the inverse Legendre transform

ψ̌t := sup
τ∈R

(ψτ + tτ), t ≥ 0.

There is no need to take the upper semicontinuous regularization as the function ψ̌t is already
upper semicontinuous. It was shown in [RWN14] that ψ̌t is a bounded psh geodesic ray emanating
from 0. In [DDNL18a], we show that this construction can be generalized for big cohomology
classes. The correspondence between maximal test curves and geodesic rays was further exploited
in [DL20] to approximate E1 geodesic rays with bounded ones, leading to a partial resolution of
Donaldson’s geodesic stability conjecture [Don99].

Let Rp denote the space of Ep psh geodesic rays starting from 0. We define the dcp distance
between two rays u = (ut) and v = (vt) by setting

dcp(u, v) = lim
t→+∞

dp(ut, vt)

t
.

The existence of the limit is a consequence of Chen-Cheng’s convexity result (4.2). One of the
main results in [DL20] shows that

Theorem 4.4. (Rp, dcp) is a complete geodesic metric space for any p ∈ [1,∞).

When p > 1, the dcp-geodesic segments can be constructed directly using uniform convexity
(Theorem 4.1). In case p = 1, in the absence of uniform convexity, the construction of dc1-geodesic
segments is done using an approximation procedure.

The comparison of singularity types of ω-psh functions is easily seen to yield an equivalence
relation, whose equivalence classes [w], w ∈ PSH(X,ω) give rise to the space of singularity types
S(X,ω). This latter space plays an important role in transcendental algebraic geometry, as its
elements represent the building blocks of multiplier ideal sheaves, log-canonical thresholds, etc.,
bridging the gap between the algebraic and the analytic viewpoint on the subject.

As is well known PSH(X,ω) has a natural complete metric space structure given by the L1

metric. However the latter does not naturally descend to S(X,ω) making the study of variation of
singularity type quite awkward and cumbersome. Indeed, reviewing the literature, “convergence
of singularity types” is only discussed in an ad-hoc manner, under stringent conditions on the
potentials involved.

On the other hand, “approximating” an arbitrary singularity type [u] with one that is much
nicer goes back to the beginnings of the subject. Perhaps the most popular of these approximation
procedures is the one that uses Bergman kernels, as first advocated in this context by Demailly
[Dem92]. Here, using Ohsawa-Takegoshi type theorems one obtains a (mostly decreasing)
sequence [uj,B ] that in favorable circumstances approaches [u] in the sense that multiplier ideal
sheaves, log-canonical thresholds, vanishing theorems, intersection numbers etc. can be recovered
in the limit. Still, no metric topology seems to be known that could quantify the effectiveness or
failure of the “convergence” [uj,B ]→ [u].

In [DDNL21b] we have introduced a natural (pseudo)metric d1,S on S(X,ω) and pointed
out that it fits well with some already existing approaches in the literature. The precise definition
of dS uses a geodesic construction due to Darvas [Dar17b]: given u ∈ PSH(X,ω) we consider
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subgeodesic rays ust where for 0 ≤ t ≤ s, ust is the geodesic segment connecting 0 to max(u,−s),
and for t > s, we set ust = max(u,−t). These subgeodesic rays increase as s→ +∞ to a bounded
geodesic ray ut encoding singularity types of u. We define

d1,S(u, v) := lim
t→+∞

d1(ut, vt)

t
.

Since the ray ut does not depend on the potential u in the singularity class [u], the pseudo-distance
d1,S descends to the space of singularity types. Given the convexity of dp, p ≥ 1, it is possible to
define dp,S(u, v). By the construction in [DDNL18a] our study carries over the context of big
cohomology classes.

We have shown in [DDNL21b] that there is a uniform constant C > 1 only dependent on
dimCX such that:

d1,S([u], [v]) ≤
n∑
j=0

(
2

∫
X

θjVθ ∧ θ
n−j
max(u,v) −

∫
X

θjVθ ∧ θ
n−j
v −

∫
X

θjVθ ∧ θ
n−j
u

)
≤ Cd1,S([u], [v]).

One amazing thing one can read from these inequalities is that the expression in the middle will
also satisfy the quasi-triangle inequality.

It was proved in [DDNL21b] that d1,S([u], [v]) = 0 when the singularities of u and v are
essentially indistinguishable (the Lelong numbers, multiplier ideal sheaves, mixed masses of [u]
and [v] are the same). More precisely, d1,S([u], [v]) = 0 if and only if u and v belong to the same
relative full mass class, as introduced in the previous chapter. In particular, u ∈ E(X, θ) if and
only if d1,S([u], [Vθ]) = 0. Consequently, the degeneracy of d1,S is quite natural!

Given the d1,S-continuity of [u] →
∫
X
θnu it is quite natural to introduce the following

subspaces for any δ ≥ 0:

Sδ(X, θ) :=

{
[u] ∈ S(X, θ) :

∫
X

θnu ≥ δ
}
.

These spaces are d1,S-closed, and according to our main result in [DDNL21b] they are also
complete:

Theorem 4.5. For any δ > 0 the space (Sδ(X, θ), d1,S) is complete.

Unfortunately the space (S(X, θ), d1,S) is not complete. This is quite natural however, as
issues may arise if the non-pluripolar mass vanishes in the d1,S -limit. It is natural to ask

Question 13. Is the space (S(X, θ), dp,S) complete for p > 1?

As alluded to above, in general L1-convergence of potentials (or even convergence in capacity)
does not imply d1,S–convergence of their singularity types. However if uj ↗ u pointwise a.e. then
d1,S([uj ], [u])→ 0.

Suppose that u, v ∈ PSH(X, θ) is such that P (u, v) ∈ PSH(X, θ). Then [max(u, v)] and
[P (u, v)] represent the maximum and the minimum of the singularity types [u], [v] respectively,
and these four singularity types form a “diamond” in the semi-lattice S(X, θ). The following
inequality between the masses of these potentials is of independent interest:

Theorem 4.6. Suppose that u, v, P (u, v) ∈ PSH(X, θ). Then∫
X

θnu +

∫
X

θnv ≤
∫
X

θnmax(u,v) +

∫
X

θnP (u,v).

In case dimX = 1, the above inequality is actually an equality, however strict inequality may
occur if dimX ≥ 2.
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Applications to multiplier ideal sheaves. For [v] ∈ S(X, θ) we denote by J [v] the
multiplier ideal sheaf associated to the singularity type [v]. Recall that J [v] is the sheaf of
germs of holomorphic functions f such that |f |2e−v is locally integrable on X. Providing a
positive answer to the Demailly strong openness conjecture [DK01], Guan–Zhou have shown in
[GZ15b, GZ15a] that for any uj , u psh such that uj ↗ u a.e. we have that J [uj ] = J [u] for
j ≥ j0, with a partial result obtained earlier by Berndtsson [Ber15b]. In [DDNL21b] we extend
the scope of this theorem to the global context, providing a result that uses dS -convergence and
avoids the condition uj ≤ u:

Theorem 4.7. Let [u], [uj ] ∈ S(X, θ), j ≥ 0, such that d1,S([uj ], [u])→ 0. Then there exists
j0 ≥ 0 such that J [u] ⊆ J [uj ] for all j ≥ j0.

The proof of this theorem involves an application of Theorem 4.6 and the local Guan–Zhou
result for increasing sequences [GZ15b, GZ15a]. Lastly, since uj ≤ u trivially gives J [uj ] ⊆ J [u],
our theorem contains the global version of the Guan–Zhou result for increasing sequences of θ-psh
potentials.

Motivated by a possible local analog of Theorem 4.7 it would be interesting to see if a local
version of the d1,S metric exists on the space of singularity types of local psh potentials.

Note that equality in the inclusion J [u] ⊆ J [uj ] of Theorem 4.7 can not be expected in
general. Indeed, d1,S([λu], [u])→ 0 as λ↗ 1 for any u ≤ 0, however if u has log type singularity
at some x ∈ X, but is locally bounded on X \ {x}, then J [u] ( J [λu] = OX , λ ∈ (0, 1).

5. Mabuchi K-energy and cscK metrics

The scalar curvature of a Kähler metric ω is the trace of its Ricci form:

Scal(ω) := n
Ric(ω) ∧ ωn−1

ωn
∈ C∞(X,R).

A metric ω is cscK (constant scalar curvature) if the scalar curvature Scal(ω) = S̄ is constant. A
simple application of Stokes theorem ensures that this constant depends only on the first Chern
class and {ω}:

S̄ = S̄ω = nV −1

∫
X

c1(X) ∧ {ω}n−1,

where V =
∫
X
ωn is the volume of ω. A central problem in Kähler geometry is to determine

whether a class {ω} contains a cscK metric. When c1(X) is proportional to {ω}, a metric
ωu ∈ {ω} is cscK if and only if it is Kähler-Einstein, and finding a Kähler-Einstein metric boils
down to studying a complex Monge-Ampère equation. In general, cscK metrics do not seem to
be solutions of Monge-Ampère equations. From a variational approach initiated by [Mab87] and
[Don99], looking for a cscK metric ωu ∈ {ω} is equivalent to minimizing the Mabuchi K-energy
functional. We recall below its definition as well as several related energy functionals.

Given a positive closed (1,1)-form χ, the functional Jχ : E1 → R is defined as follows:

Jχ(u) = Eχ(u)− 1

V

(∫
X

χ ∧ ωn−1

)
E(u),

where E and Eχ are the Monge-Ampère energy and its “χ-contracted” version:

E(u) =
1

(n+ 1)V

n∑
j=0

∫
X

uωju ∧ ωn−j , Eχ(u) =
1

nV

n−1∑
j=0

∫
X

uχ ∧ ωju ∧ ωn−1−j .

The following bi-functional was introduced in [BBE+19]:

I(u, v) :=

∫
X

(u− v)(ωnv − ωnu), u, v ∈ E1 ∩ E−1(0).
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A simple integration by parts shows that I(u, v) ≥ 0, and the domination principle ensures that
I is non-degenerate, i.e. I(u, v) = 0 if and only if u = v. An elementary calculation gives the
following useful estimates:

1

n(n+ 1)
I(u, v) ≤ Jωu(v)− Jωu(u) ≤ I(u, v),

for all u, v ∈ E1
0 := E1 ∩ E−1(0). By Chen and Tian the K-energy can be expressed explicitly:

M(u) := S̄E(u)− nERic(ω)(u) + Ent(ωn, ωnu),

where Ent(ν, µ) is the relative entropy of the measure µ with respect to the measure ν defined as

Ent(ν, µ) =

∫
X

log(µ/ν)dµ,

if µ is absolutely continuous with respect to ν, and +∞ otherwise. A simple integration by parts
shows that

dM(ut)

dt
=

∫
X

u̇t(S̄ − S(ωut))(ω + ddcut)
n

for any smooth path ut ∈ H. As a consequence cscK potentials of ω are critical points of M.
More generally, one can consider the twisted K-energy Mχ defined as

(4.5) Mχ(u) :=M(u) + nJχ(u).

Mabuchi [Mab86, Mab87] has proved that M is convex along smooth geodesics in H. Smooth
geodesic rays can be constructed using the flow of real holomorphic vector fields [Mab87, Theorem
3.5]. In general, even if u0 and u1 are in H, the weak geodesic segment (ut)t∈[0,1] is not necessarily
in H. It is thus desirable to have convexity ofM along less regular geodesic segments. This is the
content of a breakthrough of Berman-Berndtsson [BB17] (see also [CLP16] for a different proof):
t 7→ M(ut) is continuous and convex in [0, 1] if u0 and u1 are in H. An immediate consequence of
this work is that a metric ωu is cscK if and only if u minimizesM. The problem of finding a cscK
metric in H is thus reduced to finding a minimizer of M over H. As explained above, we need to
work in a space larger than H in order to use the compactness of sublevel sets of the K-energy
M. Building on the explicit formula of Chen and Tian, it was shown in [BDL17] that we can
define M(u) for all u ∈ E1 and the extended functional M is convex along psh geodesics in E1.

Theorem 4.8. Let p ≥ 1. Given a closed semipositive (1, 1)-form χ, the extended functional
Mχ : (Ep, dp) → (−∞,+∞], defined by (4.5), is the greatest dp-lsc extension of Mχ|H. It is
convex along psh geodesics in Ep. Moreover, if χ > 0, then Mχ is strictly convex along psh
geodesics in Ep.

Idea of the proof for χ = 0. We extendM over E1 by using the expression (4.5). Since
the (twisted) Monge-Ampère energy is d1-continuous and the relative entropy is lower semi-
continuous with respect to weak convergence of measures, M is lower semi continuous on E1 (it
may take the value +∞). Any psh geodesic (ut)t∈[0,1] in E1 can be approximated from above by

C1,1̄-geodesics (ut,j). The convexity of M along the approximating geodesics (ut,j) was proved
in [BB17]. The (twisted) Monge-Ampère energy part of M is continuous under decreasing
sequences, while the entropy part is lower semicontinuous. Putting these together we get the
convexity of M along (ut).

To prove that this extension is the greatest dp-lsc one, we need to show that, given u ∈ E1 with
M(u) < +∞, there exists a sequence (uj) of smooth Kähler potentials such that dp(uj , u)→ 0
and M(uj) →M(u). When p = 1, the convergence of the entropy part is sufficient thanks to
[BBE+19]. When p > 1, the argument is more involved, and there are two different proofs.
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The first one was given in [BDL17], where we first approximated u by solving Monge-Ampère
equations

(ω + ddcuε)
n = eεuεfdV,

where f = ωnu/ω
n is the density of ωnu . Then, for ε > 0 fixed we approximated f by smooth fj

and solved

(ω + ddcuε,j)
n = eεuε,jfjdV.

The second proof was given in [DL20], where we used the smoothing property of complex Monge-
Ampère flows [GZ17], [DNL17b], to smooth out u while keeping track on its Monge-Ampère
measure. �

Lemma 4.9. Assume ϕ0 ∈ Ep, p ≥ 1, and M(ϕ0) < +∞. Let (ϕt)t>0 be the unique solution
of the complex Monge-Ampère flow (3.1) with F = 0, g = 1, χ = 0, starting from ϕ0. Then
M(ϕt)→M(ϕ0) and dp(ϕt, ϕ0) as t→ 0.

A crucial ingredient used in the proof of Theorem 4.8 is the following compactness property
obtained in [BBE+19]: for any C > 0 the set

{v ∈ E1 : d1(v, 0) ≤ C andM(v) ≤ C}

is compact in (E1, d1). We have proved in [DNGL21] that this set is compact in (Ep, dp) for any
p < n

n−1 :

Theorem 4.10. Let µ = (ω + ddcϕ)n = fωn be a probability measure with finite entropy
Entωn(µ) =

∫
X
f log fωn < +∞. Then

ϕ ∈ E
n
n−1 (X,ω).

Moreover, for any C > 0 and p < n
n−1 , the set

{v ∈ Ep : dp(v, 0) ≤ C andM(v) ≤ C}

is compact in (Ep, dp).

The proof of Theorem 4.10 relies on a Moser-Trudinger inequality which provides a strong
integrability property of finite energy potentials.

Theorem 4.11. Fix p > 0. There exist positive constants c, C > 0 depending on X,ω, n, p
such that, for all ϕ ∈ Ep(X,ω) with supX ϕ = −1,∫

X

exp
(
c|Ep(ϕ)|−1/n|ϕ|1+ p

n

)
ωn ≤ C.

Here Ep(u) :=
∫
X
|u|p(ω + ddcu)n is the pluricomplex energy previously studied in [GZ07]

in the global context and in [Ceg98] in the local one.
Theorem 4.11 is an interesting variant of Trudinger’s inequality on compact Kähler manifolds.

The proof of Theorem 4.11 uses fine properties of quasi-psh envelopes, further exploited in
[GL21a, GL21b, GL21c]. The case p = 1 settles a conjecture of Aubin (called Hypothèse
fondamentale [Aub84]) which is motivated by the search for Kähler-Einstein metrics on Fano
manifolds. The conjecture was previously proved by Berman-Berndtsson [BB21] under the
assumption that the cohomology class of ω is integral.

The constant c in the above theorem is intimately related to the α-invariant of Tian. Our
proof however does not provide an optimal one.

Question 14. What is the optimal constant c?
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6. Regularity of minimizers and coercivity of M

It is important to note that there are obstructions to the existence of cscK metrics in a
given cohomology class {ω}. If ω is a cscK metric then, by Futaki and Calabi the Futaki
invariant F ({ω}) vanishes, and by Matsushima and Lichnerowitz the Lie algebra of G, the identity
component of the automorphism group of X, is reductive.

Tian [Tia94], [Tia00] has conjectured that existence of cscK metrics inH should be equivalent
to Jω-properness of the K-energy M. When G is trivial and X is Fano, the conjecture was
verified in [Tia97], [TZ00] and strengthened by Phong-Song-Sturm-Weinkove [PSSW08] who
established a stronger form saying that if a Kähler-Einstein metric exists then the K-energy grows
at least linearly with respect to the Jω-functional. When G is non-trivial, a modification of Tian’s
conjecture was proposed by Darvas-Rubinstein in [DR17]:

Conjecture 4.12. There exists a cscK metric cohomologous to ω if and only if the K-energy
is Jω-coercive, i.e. there exists ε > 0 and C > 0 such that

M(u) ≥ ε inf
g∈G

d1(g.u, 0)− C, u ∈ H0,

where H0 = H ∩ E−1(0) is the space of normalized Kähler potentials.

Given u ∈ H0 and g ∈ G the action g.u is defined as follows. Since g.ω := g∗ω is cohomologous
to ω, by the ddc-lemma there is a unique Kähler potential g.u such that g.ω = ω + ddc(g.u) and
E(g.u) = 0. In the conjecture above one can replace d1(g.u, 0) by Jω(g.u) as they grow at the
same rate.

In the same paper [DR17], Darvas-Rubinstein reduced the above conjecture to a conjecture
on regularity of E1-minimizers of M. In [BDL20] we solved the latter conjecture for cscK
manifolds.

Theorem 4.13. Assume ω is a cscK metric. If v ∈ E1 minimizes the K-energy M then v is
a smooth cscK potential. In particular, there exists g ∈ G such that g∗ωv = ω.

As a consequence we obtain the following direction of Conjecture 4.12:

Theorem 4.14. If there exists a cscK metric cohomologous to ω then the K-energy is
Jω-coercive.

Idea of the proof of Theorem 4.13. Let (vj) be a sequence of smooth Kähler potentials
converging to v in d1. We fix λ > 0 and introduce the twisted K-energy:

Mλ :=M+ nJλωvj .

SinceMλ is strictly convex, there is a unique minimizer vλj ∈ E1 ∩E−1(0). A direct computation

then shows that vλj minimizes Jωvj over all E1-minimizers of M. We next use the compactness

result of [BBE+19] and let λ→ 0 to obtain v0
j ∈ E1 minimizing Jωvj over all E1-minimizers of

M. We also have the following crucial estimate

I(v0
j , v) ≤ CI(vj , v).

The existence of a cscK metric on X implies that the group G is reductive. By the uniqueness
argument in [BB17] we have that v0

j = gj .0 for some gj ∈ G. From the reductiveness of G and
the estimate above, we can extract a subsequence of gj converging to g ∈ G, giving g.0 = v. �

Given the interest towards singular normal varieties, it seems very interesting to investigate
the singular analogue of the properness conjecture.

Question 15. Let X be a normal complex Kähler space which admits a cscK metric ω. Is
the K-energy M proper?
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7. K-polystability

The notion of K-stability goes back to work of Tian [Tia97], with generalizations and
precisions made along the way by S. Donaldson [Don02], Li-Xu [LX14], Székélyhidi [Szé14]
and many others.

Let L → X be an ample line bundle over a compact Kähler manifold (X,ω) such that
c1(L) = {ω}. Then X is projective algebraic. A test configuration (L,X , π, ρ) for (X,L) consists
of a scheme X with a C∗-equivariant flat surjective scheme morphism π : X → C and a relatively
ample line bundle L → X with a C∗-action τ → ρτ on L such that (X1,L|X1

) = (X, kL) for some
k > 1. Without loss of generality we can assume that k = 1, by treating L as a Q-line bundle.
Following the findings of [LX14], we will always assume that X is normal, which automatically
makes the projection π flat.

By analyzing the action of ρ restricted to global sections of Lr, r ≥ 1 on X0, we can associate
to (X ,L, π, ρ) the Donalson–Futaki invariant DF (X ,L). For details we refer to [Szé14, Tho06].

According to Phong–Sturm [PS07, PS10] to (X ,L, π, ρ) one can also associate a C1,1̄ geodesic
ray along which the slope of the K-energy is intimately related to the Donaldson-Futaki invariant.

Definition 4.15. We say that (X,L) is K-polystable if for any test configuration (X ,L, π, ρ)
we have DF (X ,L) ≥ 0, with DF (X ,L) = 0 if and only if X is a product.

We have proved in [BDL20] the following direction in the Yau-Tian-Donaldson conjecture:

Theorem 4.16. Suppose L→ X is a positive line bundle. If there exists a csck metric in the
class c1(L), then (X,L) is K-polystable.

When X is Fano, the result has been obtained by Berman [Ber16]. The proof of Theorem
4.16 relies on the properness Theorem 4.14 and an important formula for the slope of the K-energy
along the associated geodesic ray [PT09, PRS08, Tia12, BHJ19, SD18].

As of this writing the other direction is still open but there has been remarkable progress due
to Berman-Boucksom-Jonsson [BBJ15] and C. Li [Li21].

8. Geodesic stability

The collection of geodesic rays (ut)t ∈ R1 with ut ∈ H1,1̄, t ≥ 0 is denoted by R1,1̄, and will

be referred to as the set of geodesic rays with C1,1̄ potentials.
We have proved in [DL20] that R∞ is dcp-dense in Rp for any p ∈ [1,∞). Also, we showed

that R1,1̄ is dense among rays with finite radial K-energy. In both cases one can approximate
with converging radial K-energy:

Theorem 4.17. Let u ∈ Rp with p ∈ [1,∞). The following hold:

(i) There exists a sequence (uj) ∈ R∞ such that ujt ↘ ut, t ≥ 0, dcp(u
j , u) → 0 and M(uj) →

M(u).

(ii) If M(u) <∞, then there exists a sequence uj ∈ R1,1̄ such that ujt ↘ ut, t ≥ 0, dcp(u
j , u)→ 0

and M(uj)→M(u).

Here, the radial K-energy is defined for any ray u ∈ Rp, and is given by the expression

M(u) := lim
t→∞

M(ut)

t
.

Idea of proof. As a first step in obtaining Theorem 4.17(i), we show that one can approx-
imate by bounded geodesic rays with possibly diverging radial K-energy. The argument goes as
follows. We first consider the Legendre transform ψτ of ut, which is a concave curve of model
potentials (but it is not a test curve). We approximate this curve by test curves ψετ and take the
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inverse Legendre transform to get a bounded geodesic ray uεt , which is decreasing as ε→ 0. To
prove that uεt ↘ ut we invoke the domination principle Lemma 1.5.

To obtain (i) in case K(u) is finite, a much more delicate construction will be needed, building
on the relative Ko lodziej type estimate Theorem 1.11. The idea is as follows. Given a ray (ut) in
R1, we fix large t > 0 and define a regularizing sequence v(t,j) by following the Monge-Ampère
flow, [GZ17], [DNL17b]. We then consider the geodesic segment (vt,js )s∈[0,t] connecting 0 to

ut,j . From a C2 estimate due to He [He15] we can show that along a C1,1̄ geodesic segment φt
the function

[0, 1] 3 t→ ess supX(log(n+ ∆ωφt)−Bφt) ∈ R
is convex. This allows to get a uniform Laplacian bound for vt,js independent of t. We finally
obtain our approximating rays by letting t→ +∞.

�

We next turn to applications to existence of constant scalar curvature Kähler metrics in
terms of geodesic stability, going back to Donaldson’s conjectures in [Don99].

To start, we say that (X,ω) is geodesically Lp (respectively C1,1̄) semistable if for any u ∈ Rp
(respectively R1,1̄) we have that M(u) ≥ 0. As an immediate consequence of Theorem 4.17 we

obtain that L1-semistability and C1,1̄-semistability are equivalent.
Recall that G, the identity component of the group of holomorphic automorphisms of X, acts

on E1
0 := E1 ∩ E−1(0), and one can introduce the following pseudo-metric on the orbits E1

0/G:

d1,G(Gu0, Gu1) := inf
g∈G

d1(u0, g.u1).

We will consider the space of normalized rays Rp0 (respectively R1,1̄
0 ), p ∈ [1,∞], where we restrict

to rays (ut)t ∈ Rp (respectively R1,1̄) with E(ut) = 0, t ≥ 0.
By showing that minimizers of the K-energy on E1 are actually smooth csck potentials [CC21b,

Theorem 1.5], Chen–Cheng have verified the last remaining condition of the existence/properness
principle of [DR17], applied to the case of csck metrics. Together with the necessity result
[BDL20, Theorem 1.5], their theorem shows that existence of csck metrics is equivalent with
properness of M in the following sense: there exists δ, γ > 0 such that

M(u) ≥ δd1,G(G0, Gu)− γ, u ∈ E1
0 .

Clearly, d1,G(Gv0, Gv1) ≤ d1(v0, v1), v0, v1 ∈ E1, and we say that (ut)t ∈ R1 is G-calibrated if
the curve t→ Gut is a d1,G-geodesic with the same speed as (ut)t, i.e.,

d1,G(Gu0, Gut) = d1(u0, ut), t ≥ 0.

Geometrically, (ut)t is G-calibrated if it cuts each G-orbit inside E1 “perpendicularly”. If G is
trivial, every ray is G-calibrated.

Using our Theorem 4.17, the breakthrough of Chen–Cheng [CC21a, CC21b] together

with [Dar19, Theorem 4.7] we have obtained in [DL20] the following C1,1̄ uniform analogue of
Donaldson’s geodesic stability conjecture [Don99, Conjecture 12]:

Theorem 4.18 (C1,1̄ uniform geodesic stability). The following are equivalent:

(i) There exists a csck metric in H.

(ii) There exists δ > 0 such that M(u) ≥ δ lim supt
d1,G(G0,Gut)

t for all u = (ut) ∈ R1,1̄
0 .

(iii) M is G-invariant and there exists δ > 0 s.t. M(u) ≥ δd1(0, u1) for all G-calibrated geodesic

rays u = (ut) ∈ R1,1̄
0 .

In the absence of non-trivial holomorphic vector fields, it is widely expected that uniform
K-stability will be equivalent with existence of csck metrics (see [CC21b, Question 1.12], [Bou18,
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Conjecture 4.9]). Informally, uniform K-stability simply says that Theorem 4.18 holds for C1,1̄

rays that are induced by the so called test configurations of (X,ω). Closing the gap between L1

uniform geodesic stability and uniform K-stability is the last remaining step in the variational
program designed to attack the uniform Yau-Tian-Donaldson conjecture (see [Bou18, p.2]), with
our Theorem 4.18 representing an intermediate step.

Outline of the proof. The G-invariance of M follows from the classical fact that M is
affine along geodesic lines generated by holomorphic vector fields (see [CC21b, Lemma 3.3]).
The implication (i) =⇒ (ii) is a consequence of the resolution of Conjecture 4.12. By our

Theorem 4.17, in (ii) we can replace R1,1̄
0 by R1

0. To do the same thing in (iii), extra work is
needed because our approximation scheme in Theorem 4.17 does not produce G-calibrated rays.
The implications (ii) =⇒ (i) and (iii) =⇒ (i) then follow essentially from the breakthrough of
Chen-Cheng [CC21b]. �

Given that the optimal regularity of geodesics is C1,1 it is natural to investigate the C1,1

version of Donaldson’s geodesic stability conjecture:

Problem 6. Prove the C1,1 version of Theorem 4.18.
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http://hdl.handle.net/2433/172698, 2012.
[Bus55] H. Busemann, The geometry of geodesics, Academic Press Inc., New York, N. Y., 1955.

[Cao85] H.D. Cao, Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds,

Invent. Math. 81 (1985), no. 2, 359–372.
[Cat99] D. Catlin, The Bergman kernel and a theorem of Tian, Analysis and geometry in several complex

variables (Katata, 1997), Trends Math., Birkhäuser Boston, Boston, MA, 1999, pp. 1–23.
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